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ABSTRACT

GREAT SPHERE FIBRATIONS OF MANIFOLDS

John Petro, Author

Herman R. Gluck, Supervisor

STATEMENT OF PROBLEM: If E is a smoo closed manifold

which is smoothly fibred by k-spheres nd smoothly embedded

N N+1tin S (the unit N-sphere in IRN+l) s that these

k-sphere fibres appear as great k-sphe s in S then we

say that E is fibred by great k-spheres. \There are three

questions that guide our study: (1) given two WQQfibrations

are they topologically equivalent, (2) is it possible to

deform one sueh fibration to another through a one parameter

family of 12e*rfibrations, and (3) what is the homotopy

type of the space of all sfibrations? We address

these questions for great circle fibrations of odd

dimensional round spheres and arbitrary great k-sphere

fibrations. of -- sn S- -n- c

RESULTS: Let M be the base space of a great circle

fibration of S We show there are two complex structuresR~n n-i

on 3R2n  giving embeddings iHl and ill2 of WPn-I into

3R 2n  such that there exists a homotopy
2

g : I x EPn-l--R 2 2n with go equal to iH for j = 1 or 2

and g, = ioh where h : Pn-"--M is a homotopy equi-

2nvalence and i : M 2 e nR is the natural embedding of M.

We next turn to great k-sphere fibrations of



/

Sm x Sn  and prove a number of general statements

concerning the existence or non-existence of great k-sphere

fibrations depending on k , m and n. Our other major

result is a complete answer to the three questions above

for great 3-sphere fibrations of S3 x S3 c S

Finally we give an example of a great 3-sphere

fibration of S7 with no orthogonal pairs of fibres. This

is in contrast to the situation for great circle fibrations

3of S.
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SECTION I

Let R be a smooth closed n-manifold which

a) smoothly fibred by k-spheres, and

b) smoothly enbedded in S (the unit

N+1
N-sphere in 3R ) so that these k-sphere

Nfibres appear as great k-spheres in S

We say simply that R is fibred by areat k-spheres.

Such situations arise quite naturally in the study of

the Blaschke Problem in Differential Geometry; Section II

gives some of this background information. Most of the time,

in these applications, Z is itself a round sphere but

occasionally it is not, and in Section V the relatively

unexplored area of great k-sphere fibrations of arbitrary

manifolds is addressed.

sN

If Z r SN is fibred by great k-spheres there is a

hierarchy of three questions, in increasing order of

difficulty, which may be posed:

1) Given two such fibrations, are they

topologically equivalent?

2) If they are topologically equivalent, is

,i - ,a%.- ,,a.,, -, . p-- *- *. h,. * , **...,.., **.C. . .. .. .-. °. .....-. . ... . / . .. - ..
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it possible to deform one to the other

through a one-parameter family of such

fibrations?

3) What is the homotopy type of the space of

all such fibrations?

In general, even question 1 remains unanswered for all but

the simplest cases. Recently all three questions were

answered for great circle fibrations of the round 3-sphere

[G-W].

Most of this thesis is concerned with a search for

answers to these questions.

A good example to keep in mind is that of 3-sphere

fibrations of the 7-sphere. There are infintely many

topologically inequivalent smooth 3-sphere fibrations of

the 7-sphere [NI]. By our Theorem B, each such fibration

may be pictured as a fibration by great 3-spheres, provided

we choose a suitable embedding of the 7-sphere into a large

dimensional sphere SN . If we insist that the 7-sphere

appear as the unit sphere in 3 , then every smooth

fibration of it by great 3-spheres is topologically equiva-

lent to the Hopf fibration [G-W-Y]. So while the question

tr
" , ~~~~~~~~~~~~~~~~.... . .,...,.. - -.. - ,...-.............. ................
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of the topological equivalence of all 3-sphere fibrations

of the 7-sphere has a negative answer, if one restricts the

question to the topological equivalence of all great

-: S7
3-sphere fibrations of S the answer becomes affirmative.

This illustrates the general expectation, namely, when

we lower the dimension of the sphere in which we permit the

total space to be embedded or place geometric constraints on

the topological type of the total space we correspondingly

restrict the bundles whose fibres can thus be made into

great k-spheres. It is in this way that the geometric

theory departs from the topological theory.

The study of great circle fibrations of round spheres

is of particular importance because of its direct connection

with the identification of Blaschke manifolds modelled on

complex projective spaces (see Section II). In such purposes

it is essential to answer Question 1, in this case: are

all great circle fibrations of a round sphere topologically

equivalent?

.. 1s S2n- I
If F 2 -> --> is a great circle

fibration of the unit sphere in 3 2n we may orient the

fibres and then embed the base space ? in a natural way

%. S . .a- - -
* *I
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as a submanifold of the Grassmann manifold '2 2  of

oriented 2-planes in 2n-space, the embedding denoted by

i . We show that there are two embeddings of complex

projective n-I space, C into 2n distinct up

to homotopy inside '2 2n . which represent in the above

fashion two different versions of the classical Hopf fibra-

2n-ltion of S by great circles. Denoting these embeddings

by iR and i2 ,in Section III we prove

THEOREM A. There exists a homotopy g : I x CPn - ->

_- 2nG2 mR such that go equals one of i or i H2 and

91 ir-ehF . where h,-: MP -> is a homotopy

equivalence.

In other words, given a fibration F of S 2n-  by

oriented great circles, one of the two Hopf fibrations H

and H2  can be selected (depending on F), and its orbit

space deformed within the Grassmann manifold until it

coincides, via a homotopy equivalence, with the orbit space

of F . This is a step towards proving that every great

circle fibration of a round sphere is topologically equiva-

lent to a Hopf fibration.

If r S 2n-l $'As i fibration by great (n-l)-spheres

v.- '.=,* * .*- - ~ , , -. ** - ,
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then the notion of two (n-l)-sphere fibres being orthogonal

makes sense. In [G-W] it is proven that every great circle

fibration of S3 has an orthogonal pair of fibres. From an

analysis of the proof of this result and other theorems in

[G-W] one concludes that this fact is equivalent to the

2 2
Borsuk-Ulam theorem for maps of S to 3R . Based on

this it seems natural to ask if every great 3-sphere

fibration of S7 , and every great 7-sphere fibration of

S15 should likewise have an orthogonal pair of fibres. In

Section IV we show that this need not be the case by giving

an

EXAMPLE. There exists a great 3-sphere fibration of S7

with no orthogonal pair of fibres.

A similar approach provides a corresponding example for

great 7-sphere fibrations of S15

In Section V, we study great sphere fibrations of

more general manifolds. We begin by proving

sk

THEOREM B. Let S -k > E -> B be a smooth k-sphere

"* bundle with group O(k+l) over the compact base space B

Then the total space E can be smoothly embedded into SN
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for N sufficiently large so that each k-sphere fibre

Nbecomes a great k-sphere in S

In other words, all reasonable k-sphere bundles can

be pictured with great k-sphere fibres by embedding the

total space into a large dimensional sphere.

The results in [G-W] and [G-W-Y] deal with fibrations

of the round sphere Sn by great k-spheres. The next

simplest case to study seems to be SPx Sq embedded in

p+1~
S ~ by dividing all lengths in the product metric by

'. The rest of Section V is devoted to a study of fibra-

tions of SPx Sq by great k-spheres.

After a few general pronouncements about such fibra-

tions, we begin sampling the theory for small values of p ,

q and k * Great circle fibrations of S x S prove to

be interesting and some elementary questions about them

remain unanswered. Another sample: S 6x S13  admits no

fibrations by great k-spheres for any k > 1 (while it

obviously admits fibrations by 1-spheres, 6-spheres and

13-spheres if we drop the restriction that the fibration be

by great spheres in S20).

By far the richest and most satisfying theory we

o, ,./ -.; .. . .; :...> . . ,. . . .. ,' .-. ..4. . ... , ..4. - ... . .,., - . . . . - , - . . ,.,.,,
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develop is for fibrations of S3 x S3 by great 3-spheres.

We completely answer the three questions posed at the

beginning when we prove

THEOREM C. The space of all oriented great 3-sphere
firaios f 3 S3

fibrations of S x S deformation retracts to the subspace

of wHopf fibrations" and has the homotopy type of a disjoint

union of four copies of real projective 3-space, RP3

In the course of proving this we also get:

1) There is a 2 to 1 correspondence between

distance decreasing maps from S3 to S3

3 3
and great 3-sphere fibrations of S x S

2) These fibrations are smooth if and only if

the distance decreasing map is smooth and

the norm of its differential is strictly

less than 1

3) Every such fibration has an orthogonal pair

of fibres.

These are analogous to results obtained in [G-W] for great

circle fibrations of S

Using Theorem C we prove

,U

U %i- .± --
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THOREM D. Every smooth great 3-sphere fibration of

B 3X S 3can be extended to a smooth great 3-sphere fibra-

tion ofS7
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SECTION II

The interest in the topological equivalence of

fibrations of Sn- I by great subspheres stems from work on

the Blaschke conjecture. If Mn is a closed Riemannian

manifold of dimension n , and a(t) - exp (tv) is a

geodesic with initial direction v , then the cut point of

p along a is the last point on a to which the geodesic

a minimizes distance from p . The cut locus of p , C(p),

is the set of all cut points along any geodesic emanating

'! from p • Mn is called a Blaschke manifold if the distance

from p to C(p) is a constant and this constant is

independent of p . It is known that the cut locus of any

point in an arbitrary Blaschke manifold Mn is either a

point or a smooth submanifold of dimension n-1 , n-2 , or

n-4 . or else if n = 16 . the cut locus can be 8-dimen-

sional. Such an Mn is said to be modelled on Sn q RPn

,p,/2 , = quaternionic projective space of real

dimension n , or CaP2 = Caley projective plane if n = 16,
respectively. It has been a long standing conjecture, first

attributed to Blaschke in 1921 for the case n - 2 [BL],

that any Blaschke manifold is isometric (up to change of

scale) to its model space. The conjecture has been

9

.' ,
- . . .,.. . ...
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answered in the affirmative for Mn modelled on Sn or

3R Pn and is open in all remaining cases [GR, BE, KA, WE,

YA-1].

The Blaschke conjecture is purely geometric in nature

and nothing is presumed about the topology of M

Certainly a necessary condition for the truth of the

conjecture is that Mn be homeomorphic to its model space.

Let Mn be a Blaschke manifold, p E M , and M the

p

tangent space to M at p . The exponential map

exp : M -> M takes a round ball B(p) centered at
p p

0 E M onto M and takes BB(p) to the cut locus C(p).
p

The following theorem which describes the exponential

mapping for a Blaschke manifold allows one to begin trying

to characterize Mn topologically. It is due to Omori in

the real analytic case (OX], and to Nakagawa and Shiohama

in the differentiable case [N-S 1, N-S 2].

TENOREM. If Mn  is a Blaschke manifold, then the cut locus

C(p) to any point P E M is a smooth submanifold of M

and exp p s B(p) -> C(p) is a smooth fibre bundle.

Moreover, the fibres are great subspheres of the round

s.phere bB (p)
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So I? is homeomorphic to the "mapping cone" of the

fibration expp: P B(p) -> C(p), and to prove that any

Blaschke manifold modelled on pn, 3HPn , or CaP2  is

homeomorphic to its model space, it would be sufficient to

prove the

n-1CONJECTURE. Any smooth fibration of S by great sub-

spheres is topologically equivalent to a Hopf fibration.

This conjecture has recently been shown to have a positive

answer for n < 9 and also for n = 16 and fibrations by

great 7-spheres [G-W-Y].

The key idea in [G-W-Y], first suggested by Warner, is

to capitalize on the fact that the fibres are great subspheres

by viewing the orbit spade inside the Grassmann manifold and

studying its position there. Sections III and V of this

thesis pursue this point of view.

U~
d
,

| ". . . . . ., , . . . .. . .. . . . . - , . . . . . ,. .. .. .- . . .. - .. ._. .. .



SECTION III

Lot P S 1-> -- > 2- be an arbitrary smooth

2n-1
great circle fibration of S n -  We lose no generality in

assuming the fibres are oriented and thus the base space has

a natural embedding into 3R2 n, i : 3R

As the base space of a great circle fibration of S2n- 1

has the homotopy type of Mp-I ([G-W-Y), Sect 10) so

let : -> M be a homotopy equivalence. In this

section we show that there are two embeddings, iHl and

n-l 2ni ,of gp into G X that correspond to Hopf
B2  2

2n-1fibrations of S and are distinct up to homotopy in

G23Rn Our main result is:

THEOREM A. There exists a homotopy g : I x pn > ~ 3R

such that g0 equals one of iHl or 'H and g1  Y 1F

The proof proceeds by first showing

i(H*(K)) - iH J(H(CP n - l  for j either 1 or 2 (all

homology and cohomology groups in this section have

coefficients in 5). Using this information, the homotopy

information of G 2 2 n and the Hurewicz homomorphism from

homotopy to homology we conclude that the obstructions to

constructing the homotopy g all vanish.

12
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NOTATION AND CONVENTIONS.

1) els, 2 ,...,e 2 n denotes the standard ortho-

2n
normal basis vectors for 3R . We suppose

S2n _ en with ie2j-l - e2j and

ie 2j = -e2j-1 1 < j _< n2 -

2)HR S I -> s2n-1 > pn-l is the standard

-. Hopf fibration. Tr(zl,z 2 ,...,Z n)m (wlsw2,.0.,w n )

if and only if there exists X E S 1 Q

with z i M Xw i , l i _n . This bundle is

oriented by the usual counterclockwise

orientation on 9 . An equivalence class

in S 2 n -  under the projection n is denoted

by square brackets, [zlZ 2 ,...,zn -

- r. "(ZlZ 2 ,-..,zn).

A2n W 2n
3) A z 62n > G23R will be the involution

which sends an oriented 2-plane to the same

physical plane but with the opposite orienta-

.1 t ion.
4) 2n

4) P E 3 will always denote the oriented

2-plane spanned by the ordered frame (ele 2 ).

A(P) - P is spanned by the ordered frame

op.p

... , (e 2 ,. 1 ).•
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5) Lot Up- =[Qf. R 2 n , Qn P - (0)). For

local coordinates about P we take the map

U -> 3R 2(2n-2) - Hom(P,PL)$

where p(Q) is a (2n-2)x 2 matrix such

that the graph of p(Q) as a map from P

with basis (el 9 e 2 ) to P' with basis

(e3 ,e4 ... e2n) is the plane Q . Here

we assume

X1 x2n- 1

(xlx 2 #" "X 2 n-2PX2 n-l" " "sx 2 (2 n- 2 )) -> 2 X2n

X2 n- 2 x 2 ( 2 n-2

identifies ft2 (2n-2) with Hom(PvPL).

2n
6) Finally we assume G23 2  is oriented so

that A : U ---> 32(2n-2) is orientation

preserving, where 3R 2(2n-2) has its usual

orientation (we will see below that '62]A 2 n

is an orientable manifold).

We begin by assembling some results on the topology

of 2n 22n is the base space of an oriented circle

., ~ 0 02.-.-. . ....-........
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fibration, the Stiefel bundle,

B: S 1 > V R 2 n>G 23R2 n,

where V2 3R 2nis the Stiefel manifold of oriented, ortho-

normal 2-frames in 3R 2n . p((v 1 Pv 2 ) is the oriented

2-plane spanned by the ordered frame (v,,v 2 ) From (QST],
~c'2

Sect 25.6) we get

viT(V23Pa) =0 1 1ie,2n-3

T2 n- 2 (V 2 3R 2n) z

The exact homotopy sequence of the Stiefel bundle now implies

"l (72 IR 2n u - G2t2 ) - 0 so both manifolds are orientable.

By the Hurewicz Isomorphiau Theorem we conclude

R ( 2IR2n 0_ <2-

R 2n 2 (V 2 R A2) .Z.

NaedmV 2 n 2n
Nowdi V2't 4im G 3 + 1 =2(2n-2) + Isosince all

R J(V23t2 )v S. K 2n-2 are free, by Poincare duality we get:

IO
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H Ni 2n H (V 2n 3 i , 2n-2 , 2n-1 ,2(2n-2)+l
C (V 2 I {0 otherwise

LXMN 3.1.

R H j 2 2n-2 ,j jA n-i
2j22 H2 ( 2 R 

2 n) + Z j n-l

and 0 in all other dimensions. Furthermore, one generator
for H2 j ( 2

3 2n ) a 1_<j _<n-1 in e(B) where e(B) is

the Euler class of the Stiefel bundle.

PROOF: From the Gysin sequence of the Stiefel bundle, for

1 i 2n-4 . we get

0 - Hi (VN 2n) _-> Hi-(I ( 23 R 2 n)

UOB 2n1 i-m 2 nil 2
0H H >H3' (VH 23tUe. . > H i+l (V2 3 2n) H_ i+l (V 23R 2n) 0

Hence

El ~ ~ f i v R2 odd, i ~ 2n-3

2 a - 2j , i K 2n-4 with e(B) as
generator.

For i - 2n-3 t

I, ,' ...,, .o, ., .-, .. ...., .., ......... , . . . ... .. . .. . . ... , . .. .
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2n-3 2n 2n-4 - 2n Ue (B) 2n-2 2n

H (V 3R )- H (G 3R - H (G it

0 Z

2n2 2n 2n-3 2n

3 0

2n-2 2n _

By exactness we conclude H 3GR ) - Zz with
n-T2

e(B) n1as one generator. Now apply duality, using the

fact that all groups are torsion-free, to conclude the

proof. QED.

our next objective is to find specific representatives

of generators for H 2n-2  2 ) + *

denote the unit (2n-2)-sphere contained in S 2n- Q I 2

determined by S n- n e 1  *There is a ma

922n 2n

rersnsa generator of 3Rn 2
represents2n-2 (V2 3R ) H2 n-2 (V2 R

([ST], Sect 25.6).

2n-2n-
Laiu 3.2. if [S ]and (gP -] denote fundamental

2n-2 (,n-1
cycles in Hn- (S )and H2n-2(E respectively,

2n-2
than (p-f),([S 1) and iH (LIP ]l) generate

82n-2 (W t2
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PROOF: From the dual Gysin sequence in homology for the

Stiefel bundle we have

0 H 2n 2n P*2n
, 2n-3 (G2  2) -> H2 n - 2 (V2  2n) .> H2 n_2 2 Rn

so since f.([S 2 n-2]) represents a generator of

2n

1 1 n_2(V 2 2n) it follows by injectivity of the map p.,

2n-2n-2

that (p- f) ( [S n - J) represents a generator of

.-. n-2 (G2m 2n).

- [s2n-2
So suppose a - (p.f)*([S ]) and p represent

0-0 2nn-l
generators of H2n-2(G23Rn), and IHI.([Cpn]) - act + bp

If we can show b - *1 we are done for then we conclude
s2n-2,*(,n-

that the classes of (p-f)*( n]) and

also generate H2n (,2 2n

Recalling from Section I that all three of the

questions about great sphere fibrations have been completely

3
answered for great circle fibrations of S we gain

nothing by including the case n = 2 and assume henceforth

that n > 2 . This implies 2n-2 > 2 and

(p.f)*(e(B)) E H12 (S2n-2 1 - 0 hence

* <ateB)n- > <s 2n-2 ],(p.f)*(e(B))n-1>- 0

6-%



7P -.W 1" -W% -W- -.--a.

.

19

where < , > denote the evaluation of a cochain on a
n-i

chain. Therefore since e(B) represents a generator

2n-2 OW 2n n-i
of H (G3R n ) we must have <cla+c2 ,e(B)n> M c

So it remains to show that <iH.([pl n-1]),e(,)n-i>

- 1 . To get this we note that the map iH: Pn - l

^0 2n
G 2 -n is covered by a map of total spaces,

S S2n-1 - 2n such that the pair ("HI):
1 23R 1 1

H1 -> B is a bundle map. Hence iH *(e(B)) = e(Hl) is

the Euler class of the Hopf bundle. From the Gysin sequence

of the Hopf bundle, e(HI) generates the cohomology algebra

H* (Cp Ze(HI) V (e(H1)n, and hence, for appropriate
n-i n-i

choice of orientation we may assume 1 = <[P -],e(Hl) >

-<% ([NP ] ),e(B) n-l>. QED.

Our plan to compute the homology class of

iFe([IJ) E H2 n_2 ( e2 m2 n) with respect to the basis of

Lemma 3.2 is to compute intersection products. Since

dim W 3R2n - 2 (2n-2) a 0 (mod 4) there is a symmetric,
2

bilinear form

A R 2n)H 3GR)
I' 2n 2  2 2n-2 2

Up4

.-N Poincare dual to cup products in cohomology, gotten by
'.
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computing intersection products of representative cycles

* ([DO], Chap B, Sect 13). In the next series of lemmas we

compute the matrix for qn with respect to our basis for

('',3 2n

U.

n2n-2 22

LEMMA 3.3. p.f(S 2n -2) is a smoothly embedded submanifold

and it has self-intersection number +2 in ~2R 2n
2n

PROOF: Recall that p : V R2 n -> 23R 2n and2 2n

P = span(el,e2 ) 2

That pef is 1-1 onto its image is clear, that it is

a smooth embedding will be evident from the computation of

the self-intersection number.

Our goal is to deform the image of S2n -2 off of

itself to a new position and show that the two images

intersect each other transversally in precisely two points

with the same orientation at each.

~0 
0

P V1,i

3 so 21)pa-0f (s.-i
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Define g : [0,] x S -> 2 3R2n
-~ - 2

go (xls*. " X2n-1)

= p((cos8,-sineO,...,O), (xlsine,x1cos e, x2 ... x2n)).

We have

90(1,0•...*O) = g 2(1•00...•0) = P

g( -I •0 • • )= g 2 (-l
0  =P

0 2n-2 o

and since gO(S 2n-2 all 2-planes in 3R2n  containing

the vector el o and g2(2n-2) = all 2-planes in 32n

containing the vector e2 • P and P op are the only

possible points where g(S 2n 2  intersects g(S 2n-2

0 .gV

'I°

r ,; - ,.......,...,., ......... .. .. .. - ...-. .. .. .. . . ... . ... .



22

Since g0  and g are both injective there are

exactly two points x =(l.,O,...,O) and y~ (-lOp ... po)
.4 p

in S 2n2with go (x) - TV2 (x)= P and
=p p

Now we show that the intersections at these two

points are transverse and that the direct sum orientations

at both points are consistent with our original choice of

orientation on 3R' 2n

We digress to examine the coordinate chart

* p

a a

a. 2n-l,l a2n-1.2]
aa

is the 2-plane Qwhich is the graph of this matrix viewed

as a map from P with basis (e11e 2) to P1 with basis

(e3,e,,,e2) So we see that

Now we-ta1e ... Pa(x1., 1 )E0- .2,2.2n-1.2

2n-22
No.e1*'X )

l-k.T1(x s-
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=x x x

2n-2
E S *Since

0 2n-12*J 2n-

1n-

NIif X, 0 from ()we conclude

0

L 0 2n-2j

likewise we get

y 0

* 22

72n-20

The map cp works perfectly well in a neighborhood of P o

Iand we have Tl defined exactly as T,1 on the
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corresponding neigbborhood of y = (-1,0,...,0) E S
p

hence we get the identical result computing in a neighbor-

hood of y . We conclude immediately that the
p

intersections at P and P are transverse, since ifop
2n-2 2n-2T0 3Rn denotes the tangent space to MR at the

origin we have

( 1 -10 2n-2 - 1  2n-2 2 (2n-2)d (Vp.g 71  ) 0 (T0 IR ) d (cpg 0 'r1  )(Tm )R T R

2

Its also clear that whatever orientation is chosen for

m the direct sum of the two induced orientations in

2n will be consistent with the standard orientation

on A2(2n-2). So if we fix an orientation of S2n2

2n-2
since 2n-2 is even, the orientations induced on A

by T, and _I will be opposite but this fact allows us

to conclude that the direct sum orientations in 3 2

computed using T, or T- will agree.

42n So based on our choice of orientation for If 2 R2 n
2

we can may that the intersection number at P is +1 . It

remains to show that the orientation on U such thatop"
2(2n-21)"

U -- > S 3R is orientation preserving is

consistent with the global orientation of 3Rn for
2"-.-.
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then the intersection number at P will also be +1
.5, op

SUBLEIOM 3.4. Gkmm k < m, is orientable if and only if

m is even.

PROOF: Let Q -span(else 2 ,...sek) E GkNR and define

t [O,n]x m .- > mRm with pe E SO(m) for all a

p,(e) - cos~e - singe m

p (e m) singeI + cose mM m

p(e i- ei , 1 < i < m

0  induces a map G At-> mRm which we also

denote by Pe " Note that p (Q) = Q = A(Q).

Let ' : UQ -> 3k(m- k) Hom(QQ I be the usual

coordinate chart centered at Q , where

U - (R : RlQ - (0]]. Since pn sends e1  to -e

and em to -e ,viewing a k-plane R E U as the graph

of a linear transformation from the basis (elS,...,ek) to

the basis (ek+l...em), pT changes the sign on a vector

in the domain (e1 ) and a vector in the range (e .

Therefore we conclude

I -4 ". " . '" - " " . ', - - - . - -' ". . " . . ' '
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a a

an-k ,1 n-kk

a1 1  a1 2  1..ak

-a
21

-a -a - -

Ln-kp 1 naflk, 2  *.e-n-k,k

So the total number of minus signs introduced is

(rn-k-i) + (k-i) - m. - 2 which is even if and only if m,

is even. p is homotopic to the identity so it is always

orientation preserving,, therefore A is orientation

preserving if and only if m. is even. But GkIR is just

m
the quotient space of ?c kR under the action of A . hence

M
GOR is orientable if and only if A is orientation

*preserving. QED SUBLEMMA

As we see in the last paragraph of the proof of the

subletmna,, G2 IR 2norientable implies the two orientations

on neighborhoods of P and P opwhich are each consistent

with a fixed orientation on 3R2 (2n-2) under the map rp
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-2n

are consistent with a global orientation of WAR2n This
-. 2

completes the proof of LEMOA 3.3.

DEFINITION 3.5. For Q E____Rnheadcoe _f_

2n

.4all oriented 2-planes in 3R 2nwhich meet 0in at least

a line.

REM@RK 3.6. Note that p-f(S 2n2) c Bad cone of P

IMM3.7 Th ma iF M -> G 2 R isa smooth

embedding and iF(i,) meets the bad cone of Q , B

transversally, for each Q E ip(K )Y

PROOF: ([G-W-Y],. Theorem 4.1)

in particular, if F is the Hopf fibration H1

then with the above remark we conclude

P-f(S 2 n- 2 ) i i (,Pnl), Therefore if - denotes the

2n-2). (,n-lintersection product, we have ( l).iH (jg
-il-H

f (S'-.3)

op

~4(cro')
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n-in-i n-i
Now define [(P 1 so that <[(P n1e(H 1 ) > -+1 and

[S 2 n - 2 ] so that (p.f).([s2n-2 .- ([,,n-1]) . +1

In all that follows we assume (a,b) E Z + Z denotes that

2nelement of H (1 2R ) with representative
2n-2 2

a(p-f)*([s n-2) + bi H 1*([,,n-I]).
H1

[n-l] . [pn-11
It remains to compute iH ] ( Pn

to complete the matrix representation of In

LUM 3.8. 'Hl n has self-intersection number 0 if

(i (Cn-1i. [Cn-i
n is even, 1 if n is odd () ([(pn]).I. [(pn])

*n mod 2).

4 2 2 I1PROOF: When n= 2 a G 2 Sx S and 'iH(CP appears

21as S xfpt] so 1HI((P clearly has self-intersection

number 0 [G-W]. This deformation process can be mimicked

4k 2k-ifor G to conclude (P can be deformed completely

off of itself.

Let

ose 0 -sine 0
cose c sinT(B) - coO o0 so(4)

-sine 0 cose

1) Assume n 2m. Let S(8) be the 2n x 2n

matrix

II
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T( O1
S(O) - T(e) . (m copies of T(6) on the

0 T(8) diagonal).

2n
We apply S(8) to the complex lines in 3R then since

S(n/2) is homotopic to S(O) = 12n we view it as giving

n- 2na smooth deformation of i. (Pn-I inside 2] 2 nR
H1

2

The claim is that S(1/2) takes complex lines to

complex lines, however, with the opposite orientation. Let

P be the complex line containing the vector

x - (xliylx 2 +iY 2 ,...,xn+iYn). Clearly we need only

examine the effect of T(q/2) on V -(xl.YlI2 Y2).

x -X2

T(TV2) y Y2[X (n 2 x

" yY2

x 1  x 2] Y21
T(/2) (i) T-T(V2) - i i -iT(n/2) (1)

x2  xI  - I

.. Hence

E.q., 7 .'.', - : .: -.. - . ,. . , , . , .- -

m 
-*1'I m , " . .. ,-m--- 'dw '*;,,.-" , . ,.' ; ' ; '. .
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x x -x2

T(/2) a+bi) x2bT3.8(ai2) (a-i T (n/2) x2 x (3.8.1)

""Y2] Y2] -Y]

So S(n/2) (P) A(P,) where

x- (-Xnyn1 l,--n1  and

n-i n-I"..S(1 )1 ( P ) ) "A~ A- ) . Since

' ( )n A* (CP )the case n even is1 1
complete.

Before we treat the case n odd we pause to define

2n
an alternate complex structure on 3R . If J denotes

2n
our original complex structure on 3R given in the

NOTATION AND CONVENTIONS (1), then our new structure,

denoted Jp , may loosely be described as J- J1p - J *p

Rigorously, we define

l Jp(e ) ( J(e) -e

"e - - usual complex structure on P"c r (e2 J(e 2 ) e

J ( - -el -e
Jp~e2 - -J(e 2.- l) " -e 2 j} for 2 j j n ,

2- 2 2j-l stutueonj
Jp(e2 j) -Je2 ) - e2 1"opposite" complex

p 2j2 j-l structure on P"

Now let G t 81 .> 5 2n-1 .G > MG denote the great

.
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circle fibration of S2n - 1 determined by the complex

structure Jp . i (,zV...,z n) = "G(WlW2,...,Wn) if

and only if there exists X E S1 c C with z = Xw1  and

z - Xwi , 2 i _ n . The equivalence classes in 
2 n - 1

under the projection TrG are denoted by curly brackets,

[z1 M 2:000:z n] = TG *-1.rF(z 2'*z*'Z). Clearly MG is
n-- 2n 2 2n

diffeomorphic to CP (if r : 32R -__ is

the map that sends a 2-plane Q to the reflection of Q

in the e1-axis then its easy to see that

n-l
A-i (P n ) = r. i (M ).

*H 1  G G

n-l
CLAIM. iG (mG ) i Hlpn) = [P] and the intersection is

transverse.

PROOF: Let 4 H: V -> 3Rn- be the usual coordinate
p pn-1 -

chart about P = [1:0:...: O] E Cnl

H[Z:z: :Zn]) = (z Zr,/Zzz...,ZZl) E n-1 . Let
2n-2G W W -> 3R be the usual coordinate chart about

G p
P - [i:0:...:O] E MG , 1G(MZl:Z2 :0...Znn))

n-i
M~z2/l-,3/l,,.0.9Zn~l)E C We have
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k '. "1 -yl
xl x

S. Xn.(3.8.2)

x -Yn-i n-i
-~y x

L n-i n-i

• "x1

Yl -xl

(" iG*tG (XiYi,..,Xi-

"X n-i -'. V - -x-
L n-1 -. n

Its easy now to verify that the intersection at P is

transverse and that in U , P is the only point where

i Hl (P n - ) intersects iG (MG ). If R E ill 1 (,pn-l)n

n(I 2n2n-U) then R c P so clearly RA iG(G).
T2 p G(G)

We comment that in fact i G )(MG  and i (pn-l)

2n
are orthogonal totally geodesic submanifoids of ' 2 2 .

2) Now suppose n - 2m + 1 . Our goal is to deform

i l(C n- l) to iG(MG).

Let

a •
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100
0 1 1 (m copies of------------------------

S(O =IT) T(8) on
I T~e) o diagonal)

LI

From equation (3.8.1) it follows that

S~/2([ 1 :w2 : ... :wn])=[wl:-w3:w2 . :w:wn-1). (.83

Hence, as a mapping of '62 3R2n to itself,

2 
Y

c( T V2S((n / 2 )n 
5 ) i G ( M G )1

In ~ ~ x P~P Oj local- corints.n8.rm438.))w e

-. - yn

L~y-1 'nx

Fromtheclai wekno theintrsecionwi2
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n-ii(P is transverse at P , (xl,Yl...,X _lYn =

. (0,...,0), so it remains to compute the oriented inter-

section number. We compute the differential of (3.8.2) and

(3.8.4) at 0. It is sufficient to examine the case n = 3

1 0 0 0"
0 1 0 0
0 0 1 0

d i -1 0 0 0 1
d( 'iH "  0 =  0 -1 0 0

1 0 0 0
0 0 0 -1
0 0 1 0

0 0 -1 0
0 0 0 1
1 0 0 0

d'S' 2i H -) 0 -1 0 0
VI 0 =  0 0 0

0 0 1 0

0 -1 0 0
-1 0 0 0

If we juxtapose these two matricies and calculate the

determinate of the resulting 8x8 matrix we get a positive

number. Hence the direct sum of the orientations under

these two embeddings is consistent with our original choice

2n
of orientation on 'T2 2 . So for n odd

iI([gpn-I]) ([gpnI]) -i +1 QED.

We now have sufficient information to compute the
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matrix of the bilinear form n

%-n

Sp.fll[S 2n-2 (pofl*l[S2n-2]) iH ([Cpn-l). (p.fl *[S2n-2]1
(Pf~([ J * p~f~(S ) I ([Epn-l) . ( f)pn-i 1)

(P°f)* ([s2n-2]) "H (pn-i -- li. ( n-i

L 1

[1,n mod 2

Let iH: n -> 3 2n be the following embedding:

1) if n is odd, " = A -"H 1H2 11

2) if n is even, iH = iG*i (where

-- > MG is a diffeomorphism).

ICPM-7-/000, (CPO-)

po

len (n even) 2 Ip (n odd)

N, ,, ; , " ... . - - ....--...- . . , .. >. . ...- 7-. ... . . . .. , .- _-.. . - . . . -. -... - . .
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Let fgp n- denote the fundamental cycle in

H~n- n-H*2 ) n-n2n-
(note that PE iH Wrpll') 2f op is evn.-IO.E

if n is odd)

Now we compute the homology class of i ((P ni))

n-1 H2*
Suppose I (Pn 3 (a,b).

1) If n is odd then since i ((gPn 3)*1H "[C
H2* 1*

-0 we have

(a b) 1 10H =0

so a + b =0 *Also 
1H ((CPn-1).(p.f)*(US 2n2J)

=+1 gives:

21 0

so 2a, + b -1 *These two equations together

imply 1H(ini) 1-)

2) if n is even, then an argument similar to that

at the end of LEMA 3.8 shows that

n-l1 n-l± ([gP ])i ([CP )=+1 Therefore
H1 * H2 *

(a 2b)[1 0 1 +1

14
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so a- 1. As in the odd case, we also get

2a + b - 1 , so for n even we conclude
iS(f pn-i]) -. (1,-i).

., 
(,, n -

We have finally assembled enough information to

complete the first step of the program we set out at the

beginning of the section, namely to show

*p(H.(N)) - iH. (H . (CPn - I )) for j either 1 or 2. We

may and shall assume, without loss of generality, that

P E V(!}. By LFJ44A 3.7, iFP( ) is transverse to

p.f(S 2n-2, so let [M.1 denote the fundamental cycle in

H2 n 2 (M.) determined by the orientation such that

iF(n-2)(pf)([s]) =+l

-2n-

There are now two possibilities, either

n-i
<iF(.(K,]),e(B) >= +l or -i

If we let iF([NN]) - (a,b) then

b - <iF ([ ]),e(B)n-1> - +1 or -1

',,% , , ' .' .,. - * ' + .' ,- .- , .-*.'. .- ,.-:. - *- --. ..'.. . - . . - - ..... .~.. ... . . . . . . - *- -, . -- -- . :. -. . . . ,
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1) Suppose n is even.

, If b = +1, then

(a1[2 1 1 +1

11 1 0110]

implies a =0 . If b -I, then

(a -1) 2 1 10l)[ [03& = +1100

implies a= 1 .

2) When n is odd, similar computations with

= [21] gives the identical result.

-. 9 f 1 1L

Therefore in all cases, iF. (H)2n2( }) a ill. (H 2n-(2:Pn- l)

for j either 1 or 2 and the particular value of j is

completely given by the sign of <iF ([P]),e(B)n-i

In the lower dimensional cases we turn to the Gysin

sequences of the Stiefel bundle B , and the fibration F.

Since the embedding iF: MX -> W2 R 2  is covered by a

bundle map of total spaces, by functoriality of the Gysin

sequences we have the commutative diagram:

'.9

,9'

., : .- . 9... . 9 . - 9 . ., ,.*. ,a, . ." .. . .. ; -. - . .-..;U. .. - .. - ... .-.. . . . . .... . . _ . * .. .
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2n 3 -1l23R 2n) Ue (B) j+l 2n j+l 2n
->H(Vmn 2 3R )- H (G2 3ER ) H (V2 A -

.> Hj (S2n )_> HJ-I 2hi Uel) > HI 1'(!V )> H+I (S2n) >

Now H*( e z elF)V(e(F) n ) hence for j < 2n-2 we have

zeros on the right and left sides hence we obtain
iF* H J(F)- i *(H i (,,n-l) ) -i H2* ( ,nI Tu hH1  J (j(n-)). Thus the

compilation of homology data portion of our proof has been

completed and we now show that this information is sufficient

to construct the desired homotopy g

To be specific, for the remainder of the proof we

assume i*QF,([]) - (0,1). So our goal is to construct a

n-i 2nhomotopy g IXP >1with g = i and2 H1
l "h °h where Y. Pn -> 1 is a homotopy equiva-

lence. From now on we drop the subscript 1 from the fibration

H1  and let H denote the standard Hopf fibration.

The homotopy equivalence b. can be constructed very

explicitly by first constructing a map : S 2n- 1 -> S2n-1

sending Hopf fibres to fibres of the fibration F . h may

be constructed so that it preserves the orientations on the

fibres of the two fibrations or reverses them. Hence we

" 1 ' 4 .' : : " " "" " " " "
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may and shall assume that h (e(F)) = (H). This implies

2 1 n-i
1) if S CP ~ represents a generator

of H 2 (CP n- then i ( 2) = F hr (
H*

(since CP is dual to e(H)).

*Our plan is to construct the homotopy g ,in a step-

wiemneroe P1 2 n-i
wise ~ ~ ~ _ mane ove .. a .C P ,using the homology

data to conclude that any possible obstructions to this

procedure vanish.

NOTATION AND CONVENTIONS.

2k-1l..,~k) 2k+1 2
2k'li=2 ~i 1 =0

2k+l 2

0 1x- ~~) j=

2k~l

X, 0 Lx, 2k+ J 1-2 -1

2k 2k- 2kk-

3) BP 2k- [Il..~ T% 2k+ 2]whr
UO (X1 X~k~l)2 'A=2i

* . *0. . . .
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2k-i k-i
S -> Cp is the Kopf projection).

2k 2k k k-i k
5) f (0 5 -> CPUMI x CP )UR xCP) is

given by

2k 2k f(x1, (x 2 ,9... , x2k+i) x~ E orU1
f C)f (i.., 2k+1) l(X, PTrkl(x 2 - .. ,x 2k+l))

2k-1
x EI x S

6 f2k+1 B2k+i- Ix Pk

2k+3. ((xC 2 -,x 3 ... ,-x 2 k+l) 2k+1
f (x)= fkl (Xl,..,Xki=4x ~

2k 1 f2k~x~I~~E~~~

These rather cumbersome looking definitions can best be

summed up by the following picture for k 1

f 2

------- (CP) U (ixEP)

f 25
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B2k4-l

IZOI 3.0. If g B -> X is any map with

BIB2 k+l 4'of 2 k where

: (0 X CPk )u(I X p k-)U( X P k) > X , then there
, pk g. 2k+ 1
exists g : i xP p -> X such that g f.

2k+l I X CPk
fg

2k+ g x
B >X

PROOF: Define

k k-i
g(t,x) if x E - CP -

g(tox 'tx fxEC k-i
x t,x) if xgP -

QED.

From the homotopy sequence of the Stiefel bundle B ,

we get the exact sequence:

1 2n) t 2n)> Y,1Sl

IT rT(S -> J (V2 3R (G 2 _ j (S I

So from our assumption n > 2 , we conclude from the

homotopy information of S I - and V2 nR that:

2n - 2n _- 2
2 2 . G 2 2 (G 2 n) Z , rj(G ) 0 for all

other j < 2n-2 . So by the Hurewicz Isomorphism Theorem,

b - - - - - - - - - - - -

°> ,; ;. o-,.- ''; f,"-_, "- ,- " .-.- ;, o.." ,---.-,:, .' :- .-.-. '.-.' : -.- "-...........:-.-.-. -.-. ....-.- .:.-._ .-.- .
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r2 (G32 1 2n H 2n and since iH(CP1  is homologous

to ip li(EP ) there exists a homotopy

1 1 - 2n 1.11.3g: I X PI-> G 2 3R with g 0 = iHaP and g iF.ohIP.

Define

.2 2 1 2 2nj. (0 x CP )u(I x UP)l x P) -> G 3
2

j2 (0,x )  HX

21

j (,x)= illCx)

j (tx) = gtl x)

2j (l,x) = ir.h(x).

Define

-24 2.4 4 2n

R2 n) i2j4
If n > 3 then 3n 0 and g2g extends to a

4 2: B5 3R 2n -2 5 M-2 4 24
map : 2 where g jB mgj =j2.f
By I 3.10, i2 = g 2 .f 5  Where g2 I x CP2 _> T 2n.

2

Since g2 1(0 X P2 ) 2(O X P2 ) iHjP 2  and

g21(1 X ap2) M 2 (2 X ) .,CP 2  is the

desired extension of the homotopy g

* * - -
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If 2 < m < 2n-2 then rT G2 3 2 ) = 0 so its clear

we can continue this stepwise extension process without

obstruction up to a homotopy

gn-2  n-2 - 2n
- I x CP --- 2

Trying to continue we construct

n-1 (0 x Pn-)U(I x gpn)U (1 x EPn)--> 3R2n

-n-i 2n-2 2n-2- 2n
as above, which leads to a map g In-2--> G 2 R n

-n-i 2n-2 .n-l 2n-2 -n-i 2n-2
g - jn -f 9- represents an element

of 2n_2 (23R 2 n) Z and if this is the zero element then

we can proceed exactly as in the first stage, extending to

-n-. 2n-1 - 2n -n-i n-l.f2n-1
g > B 3 with g =gnlf~n by LEMMA

3.0 u n-i pn-i 2 n
3.10. But g is a map from I x CP to

2

with gn-l(0 x CPn - ) -i and gn-11(l x Cpn- )= iFehF
n-1

so setting g W g gives the desired homotopy and

completes the proof of THEOREM A.

Hence it remains to prove

LEM 3.11. gn-11g2n-2 represents the 0 element of

72n-2 2

PROOfs We write g for the map n-22n-2 Let

-*1! ;<,: " " ' . ' : ' ' - . ? . ' ' ' - ? ' ' ' ' : . "? .... :..' . . " . ... . ;. .
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Vo - ((xl,'2X 2n-1): i=2 Xi = 1 , x 2  0,0_x I  1

2n-1 2

82n U 2 0u V0U VlU U1
0 0 1. 1

Let ji: .- > CPn-i be the x
n 11-identification pn- = iU n-2

for i = 0,1. Orient the cell U0 x3

so that is orientation

preserving (recall the original orientation on CPn -1 to

define the fundamental cycle [P n-l]). Now orient the

remaining cells V0 , V1 q U1  such that the induced

orientations on the boundaries cancel and we get a

fundamental cycle, [82n2] = %o0+ V0 + V1 + TU ° Therefore

on the chain level, g (92n-21 - #(U 0 )+ 9#(V0 )+ 9#(Vi)+ g#(U).
'-".'. n-2
Now g(Vi), i = 0,1 , factors through I x CP which is

2n-3 dimensional, hence considered as 2n-2 singular chains

they are homologous to 0. So, if < > denotes the homology

class of a chain, g*([g2 n-2 ]l-<glUol+gl) <HO(Uo)+

-,p~ jlili> H([Cpn J) i[F(CP ])Dm(0l-(0lm 0

(note that the orientation on U is opposite to that on
1 o1

, •..

720
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For n > 3 we have the comunutative diagram:

(exact homotopy sequence of Stiefel bundle)

-> 2n-2 i)> 2n-2 (V2 ]R 2n)> 2 n- 2  
- ) >T2n_3 (S) =0

tpv P

-> 0 =H 2 n_3 (1R 2n) H2 n_2 (V2 R 2n>)P* H2n_ 2 ( 2n)

(exact homology Gysin sequence of Stiefel bundle)

Where p and p are Hurewicz homomorphisms and p is

an ismorphism. From exactness of the bottom ro p* is a

monomorphism, hence by commutativity we conclude PG is a

monomorphism. But pG(<g>) = g([ )2n-2 0 hence

<g> 0 in (32n R2 ( 2 Rn). QED.

. . . . . . .. . . . . .- 2 2



SECTION IV

Every great circle fibration of S3 has some orthogonal

pair of fibres ([G-W], Theorem C). The proof of this fact,

along with other results in [G-W] show that it is equiva-

2 2
lent to the Borsak-Ulam Theorem for maps of S to 2

Since the Borsuk-Ulam Theorem is valid for all dimensions,

it seems natural to conjecture that the same result holds

for great 3-sphere fibrations of S7 and great 7-sphere

fibrations of S1 5 . In this section we demonstrate that

this is not the case by providing an explicit example of a

great 3-sphere fibration of S 7 with no orthogonal pairs

of fibres. A completely analogous approach provides an

example of a great 7-sphere fibration of S15 with no

orthogonal pairs of fibres.

NOTATION AND CONVENTIONS.

1) {e 1 ,....,e 8 ] is the standard orthonormal basis
* 8

for 3R

2) P0 will be the 4-plane, P0 a span(ele 2 0e3 0e4 ).

3) P will be the 4-plane,

P span(e 5 e e4+ A2 e5066 7# 2 e e8)"

4) We identify the quaternions H with

.., 47

*- * 9 .o ***- '**- *,
o

. . . % ; .
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4
NR in the usual way,

a a1 + a i+a j+ a > k' '~ap
1 2 3 ~ a4k ~ , 2 a3,a4

5) we also identify 3a with a 4-dimensional

linear subspace of GL(4,]3R)U[O], via the

"left multiplication map":

a1 - 2 - 3 -a4

a 2a, -a a3
a -a 1 +ai 2 a3 j a 4 k >L= 2

a3 % 1,-a 2

a-a a21a

This map gives an algebra isomorphism of 3H

onto its image.

6) We view the Hopf fibration S 3 - S 7 > S4

as the "graphs" of the left multiplication map

given in (5). Specifically, the Hopf fibres are

given by the family of 4-planes

Q m(w. aw):z w E 3] f orall aE M
a

along with the 4-plane Q. Q 0

From this, and the matrix L a we get -

(where ama1 +ai j a k)

~~~~~~~~ + a2 +* a'j +* 4 4. 44 4.*



.4,

49

Q span e + a e + a e + a e + a e
a pa~ 1  1 5 2 6 3 7 48'

e 2 - a2e 5 + a1e6 + a4e 7 - ae 8

e3 - a3e 5 - a 4e ae + a2e8  I
e4 - a4e5 + a3e 6 - a2e7 + ale.).

We begin by exhibiting a fibration of S 7 by great

3-spheres with precisely one pair of orthogonal fibres.

Naturally the next step would be to try to perturb this

fibration in a neighborhood of one member of the orthogonal

pair hoping that this perturbation introduces no new orthogo-

nal pairs. We show that the orthogonal pair in this fibration

is the only pair of fibres that satisfies a weaker necessary

condition for orthogonality. This allows us to conclude

that if we are judicious in choosing the perturbation we

can guarantee we introduce no new orthogonal pairs while

still destroying the orthogonality of the original pair.

Let T E GL(8,}R) be the linear transformation given

by:

T(e i  • i  <i 7 T(e A e + 5 8
T~i) il ~ ~ a 2 4 2 8

If we apply T to the 4-planes of the Hopf fibration we

%' -''-'Z - .- ,:-K ." .- . * -- . .. .. . -,- • *.
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get:

T(Q mP span(el + a e + ae + ae + ae + A2a ea a 1 244 1 5 2 6 3 7 2 48'

e % ./22 a 3'2 -- ae% -as' +a'e6 +ae - as

2 2 34 25 16 4l7 +2 3~8'

e 4 + Ae a~ e aee %+a +2 28'

4 214 45 a36 2e7 +21 8

-span~f 1 (a),f 2 (a),-f3 (a)-,f4 (a)) where

f 3R R 4 _> IR8is the ith spanning vector of

P ashown here, 1_<i _<4

T (Q)=Pa.

So the family of 4-planes [P a a E 3HU(m]] gives us a

new great 3-sphere fibrat ion of S 7equivalent to the Hopf

4~4 fibrat ion.

Le m~1 f2 ff) 4  8 8 8 8
LetF f f2f3 Y 3R > R X3R x3R x3R

Note that

P -span F (1 ,,,0)m span (e4. e5 e 06+ e71 1 2 4

2 8

P spnw-1..0,,0) span(el- e Is e-e 7~l .4
-1 a F(~ ' 5e2 6'3 7'

28)
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Chacking pairwise dot products between spanning vectors for

P1  and P-1 we see that P1 =P-I

We will show that (P IP_) are the only orthogonal

pair of fibres in this fibration by showing that in fact a

weaker orthogonality property holds only for the fibres P1

and P 1  among all fibres lying over 3H (excluding P).

For a E N let Ra denote the 3-plane in

Ra  span(f 2(a),f3(a),f4(a)) c Pa R is a 5-plane

which may or may not contain a fibre of the fibration

(checking codimensions it can clearly contain at most one

fibre).

LEMMA 4.1. Ra contains a fibre of the fibration, pb 

if and only if a = &1 (in which case b=+l).

PROOF: R a D Pb if and only if each of the 3 vectors
'a-b

spanning Ra  is orthogonal to all four spanning vectors of

Pb Therefore we compute:

0 - f 2 (a)'f 1 (b) - -a 2 b 1 + a 1 b 2 + a 4 b 3 - a3 b 4

0 M f(a) o 2 (b) - 1 + a2 b2 + ab + a4 4 + a3 b3

0 f 2 (a)of3 (b) =a bb3  a 1b4 + a 4b - a b

: f 2 (a)f 4 (b) a b + b - a ba -ab " a
2 4 2 4 1 3 4 2 3 1 2 3
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0 f4(a)f4(b) a b + ab + ab + 1 ab +
4 4 44 33 22 2 11

+ (1+ a1 ) (1+ b )
2 1 2 1

a b + a b + a b + (2 +a )b +

4 4 3 3 2 2 -2 + 1 b1 +

+ (1+ 2 a
2 1

This system of 12 equations is equivalent to the matrix

equation:

--2 a a4 -a 3  bl-b -b -b 0-1 0 da

-a3 -% a, a b b -b b 0 0 -1 2a2

24a ~ 2 3 4 [ 2 32

, L:+a b b b-b 0 0 -(1+ 2 a

b4 -b3 b2 b1

A C

Suppose a = a1 + ai + a3j + a4k and b- b + b2i + b3J

+ b4 are a pair of quaternions whose entries satisfy the

above system. If ;.b - c1 + c2 1 + c3j + c4k then its easy

to check that:

*4

row 1 of A-col 1 of B -C2

row 2 of A'col 2 of B - C1

d3"U
* N ..o .*.

• ". .,,,,, .. ..." -. ... ,.., .:.:........,. ." .: .....,, , .'',.''.;.,'..''..' ._ , , ..."'..'..-..',__ _..-..,.....,-._ ,. , , --. , .- ,,". ... ..... ....... .,.. ......-.. . . .,.. . . . . . .". .,.... ... .. .-: .: .-
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row 1 of A-col 3 of B - -C 4

row 2 of A-col 1 of B - C"
3

So comparing with the entries in C we conclude that

a-b = -1.

Also we have

0 = row 3 of A-col 1 of B -c 4 + 2 4 - 2 b4  hence b4 - 0

0 row 3 of A'col 2 of B --c3 - b3 - b hence b= 0
3 2 3 23 3

0 -row 3 of A-col 3 of B -c + 2- 2  hence b-, 0

Therefore b E 3R so a-b - implies a E R . a - a,

b - bI  Finally, -(1+ row 3 of A'col 4 of B-

.22
hence - J7a = nE2b and a r-b *a =n-b and

2 1 21 1 1 1 1

ab -- 1 together yield a -*1 and b - ;l . QED.

COROLLARY 4.2. The only orthogonal pair of fibres in this

fibration are P and P-1 "

PROW': We've already shown P1 and P-1 are an orthogonal

pair. P is not a member of an orthogonal pair since

e 1 E P. n P0 but P-) P0 0 This implies P is not a

fibre.

S:
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If P P for a, b E , then clearly
a b

Ra Pa Pb By the LEMM this is only possible for

a I. QED.

Now we proceed to perturb this fibration in a neigh-

borhood of the fibre P1 " We perturb it in such a way that

the new fibre over 1, P1  is no longer orthogonal to P- 1

and so that we can still use LEMMA 4.1 to conclude we have

introduced no new orthogonal pairs.

4
Let Ba be the closed ball about (1,0.0,0) E 3R 4

where we choose 0 < g < I small enough so that for all• 2

pairs a , bEB R a and Rb are not orthogonal. Since

f2 0 f3 and f 4  are continuous we can certainly find such

an a (actually any e < I will work).

MARK 4.3. Note that f 1 (p) is not orthogonal to P 1I

for (1.0,0.0) jA p E B . This follows since all vectors

orthogonal to P- 1  lie in P1 byCOROLLARY4.2 (P1ImP 1 ,

but for p j (1,0,0,0), fl(P) A P1

Since we still want to apply LEMMA 4.1 to our new

fibration we don't want to perturb the 3 vectors f 2 (a),

f 3 (a) and f4(a) lying in the plane Pa We only want to
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move the vector fl(a).

Define G : 4 4 S3  8xS -->

4
,'i Glal,"" ",a4,bl," "9,b 4  E.i~ bifi(a)

where b12 + b22 + b32 + b42 = 1. (a,b) -> G(a,b)/IG(a,b)l

is just a parameterization of our great 3-sphere fibration

of S 7over the open set 3R 4 4 NUf-. Let

- GIB e x S3 G is a diffeomorphism from the compact set

*1~ 3B x S onto its image.

For any 6 > 0 , there exists a diffeomorphism

g : 4 _> 3R4 that is the identity on the exterior of

BI/ maps (1,0,0,0) to (1+ L,0.0,0) for n sufficiently

large so that

ag.
sup I X (x)-6ijl

i,J 4  3
xEm-

is sufficiently small so that the map T: B x S -> R 8
S

S(a ..."a4 bl,"'"0.0 - blf 'g (a) + 2 bif(a)
10 04b4 1f 1 ga Ei-2 ,

satisfies lI'f'(x)-ff(x)Icl < 6 (where c 1 is the C1

norm). Now ' is an embedding so for sufficiently small

C1 perturbations it remains an embedding ([HI], Chap 2,

- . - ,. .. . -. ,. - . . .. . .. . . . . . . . . -
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Lemma 1.3). Assume g and n are chosen such that '

is an embedding. Let G' denote the extension of '' to

a map from 3R4 x S 3 -> 3R by setting GI = G on the

exterior of B . Since G' is a diffeomorphism from

4 3
Nt X S onto its image we conclude that the new family

of 4-planes

Pa = span(f1.g(a),f 2 (a),f 3 (a),f 4 (a)), a E 3H

along with P = P determine a smooth great 3-sphere

7
fibration of S. Note that for all a E 3HUf.) a A Be/ 2 ,

P - PI * Forall aE3N define
a a

Ra' span(f2 (a),f 3 (a),f 4 (a)) (this is just cosmetic since

trivially, R ' I R ).

Finally it remains to observe that this fibration has
.11
no orthogonal pairs of fibres. Suppose P a I Pb' for

some a , b E N (clearly a or b- - is impossible since

P' P  and P0 I P0 From COROLLARY 4.2, at least one
0 00 0

of a or b must lie in B* (in fact B€/2), say a.

Since Rc -R' for all c E M from the initial

restriction placed on 6 it follows that a E B implies

b B hence P - Therefore R R -- I P
* 'b b a a b b

so by LEMA 4.1, a -1 and b -1. But
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f 1 +1 0,0,0) - f 1 -g(l0,O,0) E P and by REMARK 4.3

this is not orthogonal to P 1 - P-I " Hence PI' is

not orthogonal to P-' and this fibration has no orthogonal

pairs.

i'

. '4 4%



SECTION V

In this final section we initiate a general study of

great sphere fibrations of arbitrary manifolds. All

fibrations in this section are assumed C , over a compact

C base space, and the group of all k-sphere bundles will

be the orthogonal group on R , 0(k+l).

This section is divided into three parts. In Part 1

we prove a realization theorem, Theorem B, which asserts

that all reasonable k-sphere bundles can be realized as a

fibration by great k-spheres by embedding the total space

in SN for N sufficiently large. As a corollary we

derive what this theorem says about embedding the base space

in Grassmann manifolds. The concept of a strongly injective

embedding of an open set, an embedding

m n." U->Hom(mR ,3R suchthat for x &y in U,
Jn

cp(x) (v) d c(y) (v) for all 0 ) v E 3Rn is introduced and

its relation to great sphere fibrations is discussed.

In Part 2 we examine great sphere fibrations of

S // X S/ S .n+l We prove a number of general

statements about the existence or non-existence of great

5'7
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k-sphere fibrations of S / x S1n depending on k

m and n.

Finally in Part 3 we examine in detail great 3-sphere

S3 3,j 7

fibrations of S! g . Using the related

notion of strongly injective embeddings we completely
.9

answer the three questions about fibrations posed in

Section I. In addition we relate results proved in this

section to great circle fibrations of 
S3

PART 1.I kP i

THEOREM B. Let 11 S- ---> B be a smooth k-sphere

bundle with group O (k+l) over the compact base space B

Then the total space E can be smoothly embedded into SN

for N sufficiently large so that each k-sphere fibre

Nbecomes a great k-sphere in S

PROOF:

1. Since the group of the bundle is O(k+l) there

is an associated Euclidean (k+l)-sphere bundle,
k+l E

3Rk1 -> Z' -> B , over B such that is the

unit sphere bundle of ' • By ([M-S], Lemma 5.3) there

exists an integer p and a bundle map

-. A--
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k+ lc+l k+1- p+1-
-1 where +R is the canonical

(k+l) -plane bundle over G+1.R

a-- : E ->Ey lRP4-i)

f : B _> Gk+lm p+1

Now E g E' and E: E ->S p 3R -l solet f= E.

Since f(i-l(b)) = F(Tr'-(b))n SP  its clear that f(k-sphere

fibre) is a great k-sphere in SP , but while f is an

embedding on each fibre, fl -l(b), f is by no means an

embedding of E in Sp

2. If n = 2.dim B by the Whitney Embedding Theorem

there exists an embedding 4 : B -> Sn. Consider the

map

(t. r,f): E -> Snx SP

For a1  a 2 in E , if r(al) 1 n(a2) then

f (a} 1 *.Tr(a 2). If Tr(al) - (a2) then f(a1) It f(a2 )

since f is injective on each fibre. Therefere (#.,f)

is an injective map from a compact space E into a

Hausdorff space Snx Sk , thus it must be a homeomorphism

47
L"4. ., .% , .,% '. , . L-'-. . -""',. . " . . " . " . " " . " . " . " . " " " . " .
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onto its image.

-1
3. At a E ( Ix) a E , the tangent space T E-. a

decomposes into a direct sum, T E = T ar (x)Q T B where

a a a

TaB is transverse to the fibre W- Cx), and consequently

maps bijectively via dr on T xB . Since df a(T a- (x)

is injective and d(#.r) aT a is injective, it follows that

(*.f,rT) is an immersion.

4. Together the results of 2 and 3 allow us to

conclude that (4. rf): E -> Sn x S is a smooth embedding.

The following LEMMA completes the proof of THEOREM B.

LEMMA 5.1. For any pair of positive integers n and p ,

there exists an N and a smooth embedding of snx Sp

o N Sr ninto S taking each submanifold (a) x S where a E S

r pand S is a great r-subsphere of S onto a great

r-subsphere of S

PROOF: Let N = (p+l) (n+l)+ p and SN N+I We show
n  N+I

there is a smooth embedding t S -S-> V P+IR suchn1

that for a & b in Sn the (p+l)-plane [span c(a)),

intersects the (p+l)-plane (span p(b)] only at the origin.

Define : n _ N+Ix RN+ x R N+ p+l

copies)

*............................,;"



62

S(Xl,... Xn+) 1s= 1/,2 (l,0,...,0,Xl,...,Xn+10 ... ,0)

where x is in the p+2nd entry.

T2 (Xl,...,Xn+1 ) = 1//2 (OylO...,OO,...,O,xl,-..,xn+ l

0,.. .,O)

where x is the p+n+3rd entry.

qp+l(X,..,n+l) =V/(0..010--,X -- Xn+I )

where 1 is in the p+lst entry and x

is in the p+pn+p+2nd entry.

Let C=

Suppose for (al,9'...,'p+l) ( l,.O..,p+l) in 3p+l

we have

p+l p+1 ~
i a (x) = (y)  in ]RN+l for xy E Sn

Comparing the first k+l entries on each side it follows

that aj -i 1 i _ k+1 • Now if aj = Pj .4 0 for

some j , to be specific suppose j = 2 , then comparing

the entries from the p+2n+2+l position through the

"p+2n+p+l+n position we get a 2 xi - y= 2Yi for all

1 1 i n+l , hence we conclude x =y
-°• 

n  Sp  "b

If we define S x x -->S by

*1L -_ . , . . . . . . . . . . .
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-r (a, (al. Pa l)).(a

4...,=l.~i a

4%

p+1

then the above shows is 1-1 onto its image. As in

part 2 we conclude T is a-homeomorphism onto its image.

Since T is a linear map on the second factor it clearly

r n  rtakes submanifolds of the form [a]x S a E S a

great r-subsphere of Sp , onto great r-subspheres of S

That is a smooth embedding is clear. QED.

NFinally, r. (.Trf): -> S is an embedding that

satisfies the requirements of THEOREM B. QED THM B.

COROLLARY 5.2. Given the hypothesis of THEOREM B, the base

space B of a smooth k-sphere bundle has a smooth
" r+k+1

embedding in Gk+i- R r41• for r sufficiently large,

such that B is transverse to the bad cone through each

of its points.

PROOF: From THEOREM B we have produced a smooth great

k-sphere fibration of a submanifold, ,. (*. rf) (E) of S

Although we don't have a fibration of all of S by great

k-spheres, the identical proof of ([G-W-Y], Theorem 4.1)

carries through to produce the result. QED.

ON............
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if P is a k-plane in 3R ,k <n and P~ denotes

the orthogonal (n-k)-plane, and c : U ->Hom(P,P ~)is

an embedding of an open subset U of a manifold X then

* since Cp is injective, for x A y in U . cp(x) A~ V(y).

So for x A y in U there exists 0O)Av EP with

q4x v),~) v

DEFINITION 5.3. Given the situation just described, we say

cp is a strongly iniective embedding if for x I& y in U,

tp(x) (v) )& ep(y) (v) for all 0O) v E P * p is a smooth

strongly iniective embedding if, in addition, for all

0 ) OvE P ,the map Cy u PL given by cp (x) p(x) (v)

is an immersion.

If B is an embedded submanifold of G 13] such

that B represent s the base space of a great k-sphere
N N

fibration of some submanifold E C U Qn s 9S .S, then
Q EB

for all Q E B and coordinate maps

: UQ CN 1 -> Hom(QQ-L), cQl B is a strongly

inject ive embedding. in addition if B is the base spaceIof a smooth great k-sphere fibrat ion of E ,then B is

transverse to the bad cone through each of its points and

J1u n B is a smooth strongly injective embedding.
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Although these notions will be used more substantively

in Part 3, we present here another interesting corollary to

THEOREM B.

COROLLARY 5.4. Every compact Cw n-dimensional manifold

B has a smooth, strongly injective embedding in

Mat(k+l.,(k+l)(2n+l)), the (k+l)x(k+l)(2n+l) matricies over

3m, for any k 0.

PROOF: Apply the theorem to the trivial bundle B x Sk = E

We may take the identity map for the f in THEOREM B,

obtaining an embedding (4.rid): E -> S 2nx S k . If P

denotes the (k+l)-plane spanned by el,...,ek+l in
3+1

RN , where N = (k+l)(2n+l)+ k , then note that the

image of the map : -2n xSk -> of the lemma is
"' disjoint from P n sN Hence B embeds in G+1

*. HecGBebdsi +iN and

its image lies completely in the coordinate chart centered

at P with coordinates given in Hom(P,P*). QED.

We conclude Part 1 by briefly sketching the relation

between strongly injective embeddings, regular algebra

n 2n-1
structures on 3R and fibrations of S by great

(n-i)-spheres. For a complete discussion of regular

algebra structures on 3Rn and great n-sphere fibrations

. . . .
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of S 2 ~ see [YA-2J and [G-W-Y].

2n-1
Every (smooth) great n-sphere fibration of S

with base space S n gives a (smooth) strongly injective

embedd ing p 31 nR _> GL(nREt)U(OJ (where we view 3

n
*as the base space S minus one point). Conversely, every

(smooth) strongly injective embedding

3 R n-> GL(n,JR)U(O] (with tp(O) = 0) with a

regularity condition on ep(x) as Itxjl > (to assure

differentiability at the fibre at m)gives a corresponding

(smooth) great (n-l) -sphere fibrat ion of 5 2n

if an embedding cp :R n-> GL(n,3R)UfO) is linear

then it is easy to confirm that tp is a smooth strongly
.4n

injective embedding. For suppose x )& y in 3R n*Then

(P(x-y) E GL(n,3JR) so for 0O)&v E In A Oq,(x-y) Mv

'.4= (x) (v) - cp(y) (v) hence tp(x) (v) )6 gp(y) (v) . Such a cp

gives a regular algebra structure to 3R n(a bilinear

n n n
multiplication with no zero divisors),. u 3 R x 31t - R

via u(a,b) = tp(a) (b). Also tp always gives a great

2n-

P - span(e 0e2 00*e~ 1  3R2 we get the fibration by

* n
the graphs of the linear transformations p(a) . a E 3R

viewed as maps from P to P' ,along with the fibre P1
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Let f 3R n -> 3R be the polynomial

f (x11 ,Xl2, " ,x 1 nx2l,. "X,n-lox nn) = det ([xi. i,j=l,...,n )

and set V = f -(0). Note that GL(n,R) 3 m n - V and

for any strongly injective embedding mR --> Hom(Pp )

(with P as above) with cp(O) = 0 we must have

P(3R n )n V = 0).

Using these notions we prove the main result in

([G-W-YJ, Section 6). If U is any open neighborhood of 0

in 3Rn  and : U -> GL(n,3)U[0] is a smooth, strongly

injective embedding with e(O) - 0 then we get an associated

linearization dt : R n _> GL(n,]R)U[0 and hence an

associated regular algebra structure on An. To prove this

we view the tangent space to In at the origin, ToR 0

as 3R itself. Since e is an embedding we have T0 C(U)

is an n-plane. Suppose 0 d v E V and v E T0 q,(U). Let

b E S n -  be a vector such that v(b) = 0 (v E V implies

v is a singular linear transformation since det(v) - f(v)

- n-0) and let a z (-c) -> IR be a smooth curve with

a (0) = 0 and (.) '(0) - v (so in particular p' (0) A 0).

Then

dqpb() cu(()] .0(a (t) ~j ((t) (b)= v (b)m 0,

6,4

-'.4 " "". . . . ° " . " , . ... " , .. .o , " - ..L ' . . .' - " . -, .. , ' ' ' . ' ' ' . " , - '. . .
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but this implies D is not an immersion hence V is not

a smooth strongly injective embedding. This contradition

allows us to conclude that the tangent space to T0 C(U) is

a linear embedding of 3n in GL(n,R)U(0).

PART 2.

Throughout this part, by abuse of notation, we let

smX Sn denote the submanifold of Sm +n+l given by

M+l 2 1S m Sn E.1
l/ .Xm+n+2 = 1

. . n+m+2

z~rmI2 ii--m+2 3.i2

It should be clear from the context and thus cause no

confusion when we write sm Sn whether we mean a product

of unit spheres or a product of spheres of radius 1/./2

It should be remarked that we are examining a

restricted situation. Trivially, Smx Sn always admits a

fibration by m-spheres and n-spheres, so by THEOREM B,

8x XS n  embeds in S N  for some N so that these fibres

are great m-spheres or great n-spheres respectively. By

analogy with the case of great 3-sphere fibrations of the

. .. ." . - .... .. .. ... .. .. .. .. ...... ....... . .." .i , ... . .... .
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4 7-sphere mentioned in Section I, where we saw that there

were many, topologically inequivalent such fibrations, but

when we restricted the 7-sphere to S7 all great

3-sphere fibrations were equivalent, we expect that smx Sn
4o'

should admit a smaller class of great k-sphere fibrations.

]Rr+n+2 ]Rm+l
Let pl: 3-> M be the projection on

the first m+l coordinates, and p2 : ]R m+n+2-> n+l

be the projection on the last n+l coordinates.

LUIOGA 5.5. A great k-sphere of S*n+l lying inside

smx Sn gives an isometry from a great k-sphere in Sm

4. n
onto a great k-sphere in S

t cuts out a great

"C 0-sphere in S

1 0
contained in S x S

0As such it represents

y
the graph of an

.isometry from
x 41

It p 1  0to

2 ( )  z -axis.

'.
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PROOF: First we observe that Sk c S mx implies
-.4

k m rin(m,n). For suppose m = min(m,n) and k > m,
Let P denote the (k+l)-plane spanned by S.

m~n+2 n-i-
k+l+n+l > o-n+2 so P and p 2 ( n  ) = n  must

* ~ intersect at least along a line hence there exists

v E skn P2 (Rn+m+2). This v cannot be in SmX Sn since

lp 2 (v)l Ivil - 1 but for all w E Smx sn

1p2 (w)U p 11p1(w)l = 2, ,F. Hence we must have k min(mn).

m~n+2 m~n+2
This also shows that P n pl(3 n2 P n p2 (It

= (0] so the maps PlIP and p 2 1P both have rank - k + 1

and kernel = (0). Therefore Pi Pi(P) is a (k+l)-

plane in p(OR m+n+2 for i -I2 and P is the graph

of a linear map, L , from P1 to P2

For v E p(sX s)n I' 11 vlj 1/ji and there is a

v0 e snn P with Pl(v 0) -v and v mP 2 (v 0 ) L (v)

EF 2 (smx sn). lv - 111 1 1 -lL p(v)Il hence L is

an isometry. QED.

LE3O9 5.6. If m or n is even then S mx Sn  cannot be

fibred by great circles of S

4.

, ,-o-f*S..* ,.. . . . . . . ..,,. * . . . . . . . .
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.5 great circle fibre

7'
x

S (y)

PROOF: Say WLOG, n is even. Fix x E P (SX Sn "). If

there were a fibration of Smx Sn by great circles then

for each y E P2 (Se x Sn ), the great circle fibre through

(x.y) E SmX Sn would project to a great circle 1 (y) on

P2(S ex Sn ) through y . Each such circle S (y) has a

well defined tangent line at y . varying continuously with

a n n
y on p2 (SX S) 8 , But n as even so this is

impossible. QED.

The previous two lemmas combine to give

1 2nCOROLLARY 5.7. S X S has no great k-sphere fibrations

for any n or k l

So very quickly we see that, an we expected,

ii \.4. %-- *.- .- m- e - .- * --
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restricting to great k-sphere fibrations of sm S does,

in certain cases, considerably eliminate a number of

topological k-sphere fibrations. Without too much more

work we see that we can eliminate much more.

If n is even and m 4 n then we can apply COROLLARY

5.7 to conclude that there is no great m-sphere fibration

of Smx Sn . For suppose P is the (n+3)-dimensional

plane in Rm+in+2

P [( x 0).lX2, xm+n+2 x= x 2  m- 1

u~rn+l 5n+2 n m 1 nNote that P nS S and P n (snx S S x Sn

m SnIf there were a fibration of sx S by great m-spheres

m nthen since each fibre maps bijectively on p1(S x Sn),

intersecting the fibration with P would cut each fibre

n+2down to a great circle in S and give a great circle

fibration of S Ix Sn o By COROLLARY 5.7 this is impossible

for n even.
.4t

In particular we conclude S 2nx S2n  cannot be fibred

by great 2n-spheres.

What about great (2n-l)-sphere fibrations of

2n-1 2n-1
8 x S ? Clearly, any such fibration is trivial (let
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' 2n-l (2n-1 s2n-l)2-

S "".(S XS 2- then fix qoES and definei 2

" x2n-X S 2 n - 1 -> S 2n-x S 2 n - 1 by 4(rq)=(r,L (q))1, r qo0

where L is the isometry from s2n to 2n-1
r~q0 1 2

determined by the fibre through (rvq)). If S2n- I

-" denotes the base space of a great (2n-l)-sphere fibration:[ of S2n-l S2n- I  s4n-i _ 4n

XS c then from Part 1 we

conclude that we have a strongly injective embedding

s2n-1 -> Hom(p(R 4n),p 2 (R )). Since every fibre

in fact gives an isometry, if we identify the ith coordinate
in p1 (]R with the 2n + ith coordinate of p2 ( 4 n

we can assume we have a strongly injective embedding

2n-1 2nsn- -> O(2n), the orthogonal group on R n Such

a strongly injective embedding c induces a map

A S2n-1  2n- S 2n-1 S
C4 S X-S > LJa Foa

b 2n -1 ) 2n-1 2n-1 and

(b, ) 2n- -> 5 2n-1 are both injective so C, has

bidegree (1,1). By a theorem of Adams and Atiyah, ([HU]J,

Chap 14) we conclude that n = 1 , 3 , or 7 . Such

strongly injective embeddings certainly exist in these

2 4 adimensions, namely the unit spheres in 3 , R and R

considered as the complex numbers, quaternions, or Caley

numbers respectively. Hence we have proven:

=.4

wm %'% %.. . . . -. . . %... .. . .
,r ,-. , . ,.- . . ,_%. - -, .. .-. ... .- .. .; .... -. ..... -. ... . -. .. ''." ",," -' -" ., .. .... -. . '. .. .. _ '. . - .,. . .. . .
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COROLLARY 5.8. Sn x Sn can be fibred by great n-spheres

if and only if n= 1 ,3 or 7.

Since S 4n+ l , n > 1 does not admit a continuous

field of tangent k-planes ([ST], Sect 27.18),

2 k 4n-1 . the idea in the proof of LEMMA 5.6 generalizes

to

LEMMA 5.9. Smx S4n+l n > 1 ,admits no great k-sphere

fibration for 2 _ k _< 4n-1

PROOF: To be specific, suppose we had a great 2-sphere

S4n+4n+l
fibration of Sm 4 . Fix x E pI(Smx s ), then for

each y E 2 (  4n+l) let Tx S2  be the tangent space

to the great 2-sphere fibre at (xy) F Sn 4r l  Since

the 2-sphere fibre projects onto an embedded great

2-sphere in p (S" M S 2 (d xTS 2  is a 2-plane
2 dp2 'x.y

P g T 2(Smx S4n+l) In this way we get a continuous field

4n+l
of tangent 2-planes on S But this is impossible.

QED.

Using these general facts we now turn our attention

to some specific low dimensional cases.

1) Great sphere fibrations of S x SQ S3

.. Clearly the only possibility is for a fibration by

*'. . * .. ,*. ... .. *...... -.... .. ... . . . . .. .
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great circles. From the discussion after Corollary 5.7,

*any such fibration is trivial with base space S and it

gives a strongly injective embedding of S in 0(2). Now

0(2) - S U S so, modulo reparameterization, there are
diSj

only two possible embeddings of S in 0(2) with image

either SO(2) or 0(2)- SO(2). It is easy to see that

either such embedding is a strongly injective embedding.

So the space of great circle fibrations of S x S is just

2 points, one point corresponding to a fibration by (1,1)

curves (homotopy type of typical fibre in I,(S x S ))with

typical fibre of the form

7-(e ,e i +  - 0 e 8 2rT], 0 a < 2r ,

42

and the other point corresponding to a fibration by (l,-i)

curves, with typical fibre

(eie,e i ( - S+ a): 0 6 2r], 0 a < 2i .
42

2) By COROLLARY 5.7, S x S2 admits no great sphere

fibrat ions.

3) By LEMI 5.6 and the discussion after COROLLARY 5.7,

.17
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2 52S admits no great sphere fibrations.

1 3 5
I. 4) Great circle fibrations of S x S

S' typical great
circle fibres in

S1 xS3

33

*above. Any fibration of S is orientable so assume it

oriented and for y f.S 3, let y ILdenote that element of

S 3gotten by rotating Wr2 radians in the oriented

3
direction along the fibre through y .For each y E S,

5 (Y)-(- cos 8(l,O0, q)4 +- s in 8(Op lvq 1: 0 _< 2ir)
J2 J2

5 1 3
is a great circle of S lying entirely in S x S *Its

easy to see that the family of all such great circles fibres
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1 3
s X S

As a consequence of our work in Part 3 below we will

see that a great circle fibration can be obtained in a

3
natural way from any distance decreasing map from S to

S2 Certain of these maps will give fibrations of S1 X S3

that do not correspond to great circle fibrations of the

S3  factor as above. It is not clear whether every great

circle fibration of S x S3  arises from a distance

3 2
decreasing map of S to S so this remains a basic open

question.

5) Great sphere fibrations of S2X S3

The only possibility is for a fibration by great

2-spheres. In Part 3 below we completely catalogue all

3 3
great 3-sphere fibrations of S x S3 . Suppose we have a

37 6 7
great 3-sphere fibration of S3 x S . Let S CS

*6 7 2 3 3 3be given by S = s e . Note that S2X S =(S x S)

n el • Exactly as in the discussion following COROLLARY

5.7 we conclude that any great 3-sphere fibration of

S x S desuspends, via intersection with e to a great

2-sphere fibration of S2x S3

Conversely, we now show that any great 2-sphere

fibration of Sx 3 can be extended in one of 2 distinct
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3 3ways to a great 3-sphere fibration of S X S .By LEMMA

5.5, a great 2-sphere fibre gives an isometry from the

first factor, p1 (S 2 X S 3 S2 tc, a great 2-sphere in

2 3 3
2(SXS 5) S *.F If we view the first factor as

sitting- inside S3 then the isometry from S2 into

Sl/12-extends in only one of two ways to an isometry from

S ~toS

f

.4S

f has two suspensions to an isometry from

Sto p 2(S2 X determined by

a x 1or a -> x 2

So suppose given a great 2-sphere fibration of

S2X S 3 .S 6 r 1 where317 R 8, as e (all first

coordinates zero).
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s 2 ->S 2 x S 3 pr > B

Let a 2 = (0,'2/2,0,0), a3 = (o,0,J2/2,0),a 4 = (0,0,0,/2/2)

be 3 points in pl(S 2x S 3 . For each x E B

4 4
-1 2

pr (x) - a.i2 'i(ai,xi )  Ji=2 i 2 -1,

2 3. 2x3x 4  2 2(S x S3) with
2J
- (x2 ,x 3 ,x 4 ) an orthonormal

4
3-frame in m ]

So the correspondence x -> 2_(x2Px3,x4 embeds B in

4 /2 2 3.
V3 R and any such fibration of S X S is trivial with

3
I B - S3

Now we have a fibration S 0 -> V4 m4 _%> V3R4 where

q applied to any 4-frame simply ignores the first vector

of the frame. This is just the double covering,

V4 VR 4 = 0(4) "So(4) U 80(4) and V3]R 4 . SO(4). So the
disj 2 3

*i "base space B of our great 2-sphere fibration of S X S

4has 2 distinct (otherwise unique) lifts to V4 ]4 . Suppose

we lift B to SO(4) Q V4 R , p : B-> SO4). Let

a1 - (42/2,0,0.0), and qi: B -> S , 1 _ i < 4 the map

gotten by projecting the 4x4 matrix p(x), x E B , onto

its first, second, thirdo or fourth column vector

**.*.*--I
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respectively. For each x C B we get a great 3-sphere in
s7  8 3 3

S , lying entirely in S3 XS

4 4 2

,/2
-> i-i ai(a.ix)) i a.2 = 1]

Suppose two such great 3-spheres intersected. This

means

4 4

4 2 4 2
where i i 2 a i  Eiffil p i  1 , and x j y are both in

B . Immediately we see a. 1 _ i _ 4 . and if

a (ala 2 0 a3 , 4 ), then p(x) (a) - p(y)(a), where p(x)

and p(y) are elements of SO(4). But if two elements of

SO(4) agree at one non-zero vector, they in fact agree

along an entire 2-plane in 3 (Alv = A2 v , A1  A2

in SO(4) implies A-A v - v so A A: v v
2 1 2 1

-1 *
and A 2- l v . SO(3) hence 3 0 ) w E v with

A2 -1Alw = w). So there must be a vector of the form

3(0,y2 ,Y3,y4) - E E S with p(x)y - p(y)y . Hence

1 YW2 2P3Y)E- 2 Y4 =

_Z/
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and pr- (x)n pr- (y) JO . This contradicts the fact that

pr is a projection of a fibration and x A y . Therefore

no two such 3-spheres can intersect and the family of all

33
such great 3-spheres fibres S3 x S . Clearly if we apply

the process of intersecting this fibration with e1  we

2, 3
recover our original great 2-sphere fibration of S x S

hence these two operations are inverse.

Had we lifted B to 0(4)- SO(4) we would have

3 3
obtained another fibration of S x S . So in summary we

have the CONCLUSION: There is a 2-to-i correspondence

between great 3-sphere fibrations of S3 x S3  and great

2 3
2-sphere fibrations of S x S . Therefore all the results

we obtain in Part 3 pertaining to great 3-sphere fibrations
" of 3 S3

of S x S can, with minor modification, be applied to

great 2-sphere fibrations of S x S3

6) Great circle fibrations of S3 x S3 r S

Let

1 3 1 3
F S > sI2 F2 " S > SVA 2

tq tq2

S 2  S 2

I
''''mmmmmrm ~m r'iml~...~ Ls'-T'"' a 7'o '.' ''.-.'"., ."'."',.,'"" --."','-
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3 3be any two oriented great circle fibrations of pi (S x S3),

1 - 1 and 2 respectively. Given a great circle fibre-

on the first factor and one on the second factor their

1 1 3 3 71
product isan SxS S x C S . By (1) this S x S

admits a unique fibration by (1.1) great circles (since

the fibrations are oriented the notion of (1.1) makes

sense on all such SIx S1  S3x S 3). In this way we can

associate to any pair F1 and 32 a great circle fibration

of S3 x S3 a

As in paragraph (4) above there remain unanswered

questions here also. Are all great circle fibrations of

3 3
S x S obtained by a product of two such fibrations of

the factors?

3 37) Great 2-sphere fibrat ions of S x S

None of the above lemmas address the case of
3

fibrations of S3 x S by great 2-spheres. From the Gysin

sequence we can settle this case by proving that in fact

S 3x S3 does not even admit a topological fibration by

2-spheres.

2 3 3 4Suppose we had a fibration, S -> S3 x S -- > N4

Since S3 x S3  is simply connected and S2 is path

$1 connected I 4 must be connected and simply connected, hence

I+
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0H (M,9 3 M and the fibration is orientable. The Gysin

*" sequence of our hypothetical fibration gives:

5 4 5 3 3) H 4 6 4
-> H (M4)-> H5 (S X S31-> H3 (M4--> H (M

II II II

0 0 0

So by exactness we must have H (M4 ) = 0 . But another

segment of the Gysin sequence gives:

2 24 2 3 3 0 4 3 4-> H (M4--> H (S X S H (M ) (M

ii I
0 z

So the conclusion H(M 4 ) 4 0 destroys the exactness of

this segment. Hence such a fibration cannot fit into a

Gysin sequence so it must not exist. Therefore S 3x S3

admits no great 2-sphere fibration.

8) Examples of Smx Sn which admit no great k-sphere

fibrations, k > 0

1 2 2 2 2 5 4 9
Sx S S2X S S x S 84X S 9

S1 S4 S2 S4 S2 S9 84 S13
813SS K SS

1 6 2 6 2 13 6 9
S S S S S XS S XS

-J- * ' * > * ,'
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s Sa S 2 S 8 S2 x S 1 7 S6X S 1 3

PARTl 3.

In this part we examine in detail the case of great

3 3 7
3-sphere fibrations of S X S Q S From Part 2, we

know that such a fibration is trivial with base space S3

and it gives a strongly injective embedding of S3  in

3
0(4). Conversely, suppose o t S -> 0(4) is a strongly

3 1
injective embedding. For x E S , the set [((btp(x) (b)):

3 J2 3 3
b E S3 ] is clearly a great 3-sphere that lies in S x S

Since the embedding is strongly injective, for fixed

b ES 3 , the map from S3  to S 3  x->p(x)(b), is

injective hence a homeomorphism. So for (b,a) E S3 x S3

there is an x F S3 such that 0 (x)(pb) - a. Alsocp

is a strongly injective embedding implies, for x O y ,

7 7
(Graph pw(x) n S ) n(Graph q(y) S ) - • Therefore we

concludes There is a bijective correspondence between

(smooth) great 3-sphere fibrations of S3 x S3 and the

image in 0(4) of (smooth) strongly injective embeddings

B 0 s 3 ->(4) .

* go our approach to studying great 3-sphere fibrations

S -
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3 3of S X S will be to analyze the equivalent problem of

strongly injective embeddings of S3  in 0(4). Since 0(4)

has two connected components, we lose no generality by

restricting our study to strongly injective embeddings of

S3  in SO(4). It is well known that SO(4) - S3X RP3

hence SO(4) has S 3 S as double cover. In all that
,..: 4

follows we identify 3R with the quaternions in the usual

manner and S3 will represent the quaternions of norm one.

With these identifications we get the double coveri $3 S3

projection h S S x S -> SO(4)

h(uv) (x) - uxv (quaternion multiplication)

Suppose 1 = S - > SO(4) is a strongly injective

embedding with p1 z S3 -> S3  given by ' (v)= 5(v) (1).

Since 1 is a strongly injective embedding, is

injective hence it is a homecmorphism. Let

"";m S1  
3 _>5SO(4). if w- -(v) then

.- (w) (1) w v and epy, ev() C. (v) -

*: - (w)1(1) - v * Now q is just a reparameterization of t

hence Image t - Image % and l is a strorngly injective

embedding which determines exactly the same great 3-sphere

fibration of S3x S3  as j. So given a strongly injective

, :.:. ?. :.. ,.-.............,. ....... ,......-.... .... .
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3

embedding : -> S0(4) we may and shall assume that

(v) = v for all v E S3

We have

3 3
S x S

h (double cover)

S3 SO(4)

Since S3  is simply connected € lifts to a map

A 3 3 3 AAiuiuu

: S -> Sx S such that h.cp- = , • is unique up

to choice of base point lying over say ep(l). So

3 3
(v)= (f M)gvM ES xS and

v -, l(v) = €(v) (1) - h(f(v),g(v)) (1) = f(v)g(v)

Therefore g(v) - [f(v) ]-I v and g depends uniquely on
fwhich depends, modulo choice of h-1€(1), on the

strongly injective embedding c . So strongly injective

3 3
embeddings depend only on a single map f : -> S

Now we address the question: What criteria are there

to guarantee that a 3-sphere embedded in S3 x S3  projects

via h to the image of a strongly injective embedding?

s3 s3Let d a S -- S-> [0, 17] denote distance on the

;;,.,. ~ ~ * * ..,. .,,. .. ... , ..- . ... *.. .. . . . . . . . . .
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unit sphere S3 , d(xy) = least value of the length of the

great circle ar joining x and y . Since multiplication

°3
by a norm 1 quaternion is an isometry of S 3 we get

'.4

inundiately,

d xy) = d(xqyq) = d(qxqy) for all xyq E S3

OLEMM 5.11. A necessary condition for h(xy) (w)= h(uv)(w)

for some w E S3 is that d(x,u) = d(yv).

PROOF: xwy = uwv. xwyv - w , so d(x,u) = d(xw,uw) =

Sd(mXwyv 1 ) - d(lyv 1 ) - d(vy) = d(yv). QED.

LEMQA 5.12. h(x,y) f SO(4) has a fixed point (+1 eigen-

value) if and only if d(x, 1) = d(y,1).

PROOF: 1=o) h(xy) (w) = w = h(l,) (w) so by LEIMA 5.11,

i. d (x, 1) = d (y, 1).

(as) If x - *l then d(xl) = d(y.l) implies

y - *1 and both h(l,l) and h(-l,-l) have fixed points,

A *so the conclusion is true for x - 1 .

For x 1 1 , .suppose d(x,l) - d(y,1) - c with

9. 0 < c < w • Let R denote the quaternion on the great

circle through 1 and x with d(l,*) - iV2 (E 6 I1 and

d(x,*) < i/2 . We recall that SO(3) IRp3  and one way

to make this identification is to conjugate by norm 1
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quaternions and this action --

Xrestricted to the unit 2-sphere 5-X "

in S3 of quaternions with real

part 0. So there exists w E S3 S

such that w x w = y

Now conjugation by w is an isometry of S3 fixing

.0 *1 so it takes the great circle through 1 and x to the

great circle through 1 and

But d(lw-lx-lw) = d(wx-1 w) d(l,x - 1 ) = d(xl)

- d(y,1) and n/2 > d(x x d(w x ww x w)=

= d(w -x 1w,k) together imply we must have y = w-1 x -1w

This implies w = xwy - h(x,y)(w) and h(x,y) has a fixed

point. QED.

THEOREM 5.13. Given x,y,uv E S3 (x y) (w) h (u.v) (w)

'4 3for some w ES , if and only if, d(x,u) = d(yv).

PROOF: (-) LEMMA 5.11.

(i-) d(x,y) = d(y,v) implies d(l,x u) = d(x,u) =

v-1)
I d(yv) I d(l vy •). So by LEMMA 5.12, there exists

3 -1-1 -1-1
wf S with w - h(x Uvy) (w) x xuwvy hence

h(x,y) (w) -xwy- uwv h(u,v)(w). QED.

This is the key result we were after and we will see
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shortly that it will allow us to completely characterize

strongly injective embeddings of S in SO(4). Before

we do that, however, we digress momentarily to reconsider

1 3
great circle fibrations of S x S and settle a claim made

in Part 2, paragraph 4.

Recall that we saw in Part 2, paragraph 4 that every

great circle fibration of S3 gave rise to a great circle

fibration of S x S by "lifting" each fibre so that as we

went around the great circle in S3 we also went around the

1
first factor, S Projecting such a fibration onto the

second factor recovers the original great circle fibration

of the second factor. The question asked was whether every

great circle fibration of S x S3 projects to a great circle

3 d29
fibration of S As in LEMIA 5.61 if we fix p = ( S 0)

on the S factor, every great circle fibration of S x S3

3
gives us a vector field on the S factor. For each

q E S3 , the fibre (which we assume oriented) projects to a
s3

great circle through q on S and we take the unit tangent

vector to this circle at q , call it F(q). Clearly, F(q)

is just the projection on S3  of the point on the fibre

through (p,q) whose projection on S1 is (0,2)•

s3 3Conversely, given a unit tangent vector field I : S -> S3 ,
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1 3
F(q) . q, we would try to fibre S x S by taking the

collection of great circles on

.S llq) = [cos0( ,0.q)+sine(O 6 Fl(q)): 0 9 r 2 ]

1 3

for all q E p2 (S 1 x S 3 Of course for arbitrary F this

1 3collection will not fibre S x S3 . As a minimum F must

be injective for if F(ql) = F(q2) then

(0O, F2 ,F(ql) E S1 (ql)n sl(q2 ) and two "fibres" would212

intersect. If F is injective then no two such great

circles in S x S3 will intersect at 8 = 0 and 2v and

. = and -- Since two or more such great circles
2 2

intersecting is the only thing that would prohibit this

family from fibring S 1x S3 we conclude:

if3 S3 _ 3 3

If F : S ->S F(q) E for q E , and if we

define H : [0,2r]x S3 -> S3 by H(q, G) = cose.q +

5sine.F(q) then the family of great circles in S :

,-(q) - f (cose, sin0,H(q, e): 0 _< e _< 2v] for all q ES 3

fibres S1x S 3  if and only if H( ,): S -> S3  is

injective for all 0 8 9 2vr
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For q E S3  the imag of q under H as 0 goes from 0

3
to 2 w is clearly a great circle of S and this great

1
circle is just the projection of S (q) on the second

factor. So we are seeking a map H as above such that

H(0C ) is injective for all e yet the flow of H does

not determine a great circle fibration of S3

First note that there is a bijective correspondence

between smooth, unit vector fields on S3  and smooth maps

3 2 2 3 2
S - S where S r S and S represents the purely

imaginary norm 1 quaternions. Given F as above, define

f : 3 -> S2 by f(p) - p- F(p) (quaternion multiplica-

tion). Note that 2m d(pP(p)) - d(lp- (p)) hence
2 2

Im f r Conversely given f : S .> 2 let

3 3
F a -- > be given by F(p) -pf(p). Its clear that

F(p) E PL

In terms of f the map H above is given by

R (p, 8) - cos-P + sin0 pf(p) - p(cose+ sine f(p)).

For each p and 0 we get an element of S0(4):

(p,0) -> h(p,cos@+ sine.f(p)) E S0(4).

For brevity we denote this element by h (p, 0).

' ', .',.: .:-.. :.. - - *, ,.,*. .. . . . *.. . . . > . . . .. . . .. * . .



92

If H is not injective for some value 0 of 0 then

H(p, 0  H(q, 0  for p j& q and consequently
0 0

h(pe O)(1) - H(P,%) - H(qe O) = h(q, 0 ) (1). (*)

So by THEOREM 5.13 we conclude

d(p~q) = d(cose0+ sin80 f(p)8cOsG0+ sine0 f(q)).

Now as 0 goes from 0 to 21v , cose + sine f(q) goes

around the great circle through 1 and f(q), hence

d(cose+sin8.f(p),cos9+sine.f(q)) j< d(f(p),f(q)) Ye

and if f is distance decreasing, then for all p q and

all 

I

d(p.,q) > d(f(p),f(q)) > d(cosG+sine f(p),cos0+sine f(q)).

Therefore, again by THEOREM 5.13,

H(p, ) h(p, e) (1) & h(q, e) (1) w H(q, 0)

3 3and K( ,)s S -> S is injective for all values of 0

if f S S3 -> [£} r S2  is the constant map then one

can easily check that the flow along the related map H

deterines a great circle fibration of S3  (the Hopf

:.; :. s ~x : ...:.. .:... .: .: .': ... ..... .,. ..:. -- -- -... .-.. .. ... ..-.. .... ... .. .. ...I
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fibration). Now let 7 be a perturbation of f in a

neighborhood of 1 such that it is still distance decreasing

and (x) = i for all x with d(x,l) >ni/4 and f(1) 1
S3 S3

Since I is distance decreasing ( e): 3 -> S is

still injective for all 0 , however, if

- (1,e): 0 0 2 n], r(i) - ((i,0), 0 0. 2 T]

then 1 E *9(l)fn I(i) but ?(l) & iS(i) since i E T(i) but

i / U(1). Therefore I does not determine a great circle

3 3fibration of S But for each q E S

s(q) M( 4 (cossine,(q,e)): 0 e 2rT]

44

1 3 5is a great circle in S x S cS and I'( .B) injective

implies the family of all such great circles fibres Slx S3 .

So for every distance decreasing map f : 3 _> S2

we get a great circle fibration of S x S . Unfortunately,

in equation (*) above we are only applying the element

h(pe) E 90(4) to the vector 1 E S3 so we cannot apply

the converse of THEOREM 5.13 to conclude that H( se)

injective for all B implies the related map f : S3 -> 92

is distance decreasing. Whether this is so or not remains

j* t **t U **~ *.* *~,- *d* . . . *
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an interesting, open question.

Now we turn our attention back to using THEOREM 5.13

to study strongly injective embeddings of S3  in SO(4).

THEOREM 5 .14. A submanifold of S x S corresponds to the

image of a strongly injective embedding of S in SO(4),

if and only if, it is the graph of a smooth distance

decreasing map t from either 83 factor to the other.

PROOfs Using THEOREM 5.13, the proof is identical to ([G-W],

Theorem A).

THEOREM 5.15: p a 8 3 .- > 80(4) is a smooth strongly

injective embedding if and only if the corresponding distance

decreasing map * is differentiable with Idl < 1.

PROW: (o) By THEOREM 5.14, I corresponds to a smooth

distance decreasing map from one factor of S3 to the

other. Therefore we have Idtj < 1

Suppose d t = I at some point (u,v) E S3x S 3

v W *(u). Left and right multiplication in the Lie group

3 are both diffeomorphisms of norm 10 so replacing h by

h(x,y) = h(uI Xoyv 1) we may and shall assume (u,v) = (1,1).

Idtl 1 implies there is a parameterized curve

3
"aw s (-g.) ->8 a w(9) - 1 I 9'(O) =V with IvI - 1

..........
, , ,_ _. . , , ' ",. '. .. * %. .... ' ... ... .'. ' ."- . . . .
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such that I1( .'1o11 - Ivl - 1 We assume a traverses

a portion of a great circle, and by a conjugation action

applied to the first factor which rotates the purely

imaginary 2-sphere we can suppose a(t) = cos t + i sin t

Now ,.a(t) - 4L(t)+ 2 (t)i + *3 (t)j + *4 (t)k , with

2
NOt 41(0) 1,*1(O) -o 211J ;4(O) =0, 2(0)+

+ 3(0) + 4'(0)= 1

The matrix for h(v(t),*.v(t)) E SO(4) is given by:

cos t -sin t 0 0 *t -( 2(t) -( 3(t) - 4 (t

,lt)mSin t cos t 0 0 *2 (t) 1(t) 4 1t) -*3(t)
0 0 cos t -sin t 1 31t) -# 4 (t) tilt) #2 (t)

0 0 sin t cost *4 (t) #3 (t) 2(t) #1 (t)

Lj~t J -()*() 2t l

3 0 0 -.

421(0) 0 *4 o 1 0 ) (0)

m 4*

*4F0 *3(0 -*'0 0 J

**V

-. - -**B* * 2 . .* .M''. .- --
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1 2'(°) -*3.(0) -4'(0)

1+ #2 (0) 0 4 # ,() 3 (0)

"3(0) - 4 (0)0) -+*2' (o)
L4' (0) *3' (0) 1"2'(0) 0

It is a straightforward but tedious calculation to compute:

det[Idt-oNt-01(t)] - 1+(2'0) 2+3 (0) 2+4 ' (0)2)2(5.15.1)

So CF(.a)'(o) - a ' (o)! 1 implies dot[ Ito H(t)] - 0

Let w E S3 be a vector such that

S[i o H(t)](v) - odttw

Nowwe suppose C : 83 -> S3x 83  is given t- (ids).

Then we get

*(d%~) 1 (V) a-4- tIw= p. a(t) w -1I~. h(W(t),4.qCt))w) wld1 lV)"dt t-O t--o

" [ I H(t) ](w) - 0 (5.15.2)

hence i is not a diffeomorphism at 1 E S 3  Therefore

is not a smooth strongly injective embedding.

(a) We already know that given a distance decreasing

a"-a
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3 3
map S ->S we get a strongly injective embedding,

a S -> So (4), ep(x) - h (x, * (x)). It remains to show

that 4d#1 < 1 implies c is a smooth strongly injective

embedding.

Suppose p is not a smooth strongly injective

embedding. Then for some w E S3 , .w is not a diffeo-

3
morphism. Hence there is a point p E S and a unit

vector V E UpS3  (unit tangent space at p) such that

(dw) p(V) - 0 . By an argument completely analogous to

that at the beginning of the *if" part of the proof, we may

suppose p - #(p) -1 and V is the unit tangent vector

to the curve a(t) - cos t + i sin t at t = 0 .

So we can apply equation 5.15.2, this time knowing

(d%)1 (V) = 0 to conclude [I-A et ]MH) - 0 By(ddt

(5.15.1) we must have [-1+#2' 023(0) 2+*4 ° 0) 2]2 = 0

hence j(*.a)"(O)j2  2' (0) + 32 + *3(0) + *( 0 )2  1 and

QED.

THEOREM 5.16. Any great 3-sphere fibration of S 3 x S3

must contain some orthogonal pair of fibres.

PMC(: Corresponding to any great 3-sphere fibration of

83x 8 is a strongly injective embedding a S -8 > SO(4).

Corresponding to p is a distance decreasing map

*1 . .. . . . . .



98

"83 S3

. s --> 3 8 mapping one factor of the double cover of

S0(4) to the other., say WLOG, the first to the second.

$ distance decreasing implies -*(x) 4 Im * for any

x E S 3 o is not surjective. By the Borsuk-Ulam Theorem,

there exist u in the domain of * such that

*(u) - *(-u). Let P denote the fibres over *u

- 1P U f-1-(P*v*U):V f J.

W2

For V = (vuv(u)) f P and W = (w,-uw*(u)) E P weu -u

compute V'W . Note that for quaternions, a = a, + a i +

+ a 3 j + a 4 k and b - b, + b2 + b3J + b4k . Relab) = all1 +

+ a 2 b 2 + a3b3 + a 4 b 4 - a-b , hence

VOW = e(vw) + Re(uv*(u) (-uw*(u))) -

- Re(wv-uv(u)$u))wU) - Re(v-uv;) -

- Re (v ) - Re (uvu - 1 1 = Re (e;) - Re (v;) =o

(recall that conjugation by a norm one quaternion fixes the

real axis hence Re(uvwu-1 ) - Re(vw)).

Therefore we have shown P - p QED.
U -u

From these three theorems we see a very strong

analogy with great circle fibrations of S3 and the work

• . .. . . .., - , , o,.,_. . , '..,_.... • .......-.....-...... "-.........-..'...-........-... .. ._ .. . ---..



of [G-W]. To keep this analogy going we would like to

distinguish a certain Onice* subspace of the space of all

great 3-sphere fibrations of S 3x S3 and call them Hopf

fibrations.

If we take the Hopf fibration of S 7 by great 3-

qpheres as the graphs of left multiplication in M

(described in Section IV) and restrict to graphs of norm

one quaternions, then clearly these 3-spheres fibre

A3 3
S x S This fibration corresponds to the distance

s3 s3
decreasing map * : S -> 1 E S (first factor to the

second). Certainly this fibration of S3 x S3 should be

called a Hopf fibration. As in [G-W], any orthogonal

transformation of this fibration (which still fibre S 3x S )

should also be called a Hopf fibration. Those orthogonal
transformations which fix S x S are of the form

[A0 A where A E 0(4).

0~ A2  i

Restricting to the special orthogonal group, so we

stay in the class of strongly injective embeddings of S3

in S0(4) suppose first that Ai E S0(4) for i - 1 and

2 In this case we can represent the action of such a

transformation as

IM
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(a~b) -> (xay,ubv) for (ab) E S3 x S3 r S7

3where x , y , u and v are elements of S

If Pr - [ (crc) z c E S3] is a great 3-sphere

of our Hopf fibration, then under the transformation given

above

Pr-> 14: (xcy,urcv): c E S3 ]

.11 (c, (uxlcl-v):c' E S ]

42

So the distance decreasing map corresponding to this new
-1

fibration is *'(w) - y v - constant.

Suppose now Ai f 0(4)- SO(4) for i 1 and 2

We get

(a , ) -> (Ala 1A 2a) - (A1 a ,A 2  )

" i . i. i i
where if a -(a ,a ,a ,a4 ) then

a i - (-a 1 ,i , ,3 a4 ), i- 1 and 2 , and Ai' E so(4),

i - 1 and 2 S So nothing new happens in this case and we

concludes Any special orthogonal transformation of the
. 3

Hopf fibration of 9 3x * which still fibres 8 3x S

has a corresponding distance decreasing map of the form
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*(S 3 ) - constant. Clearly all of this could have been

applied to the "other" Hopf fibration of S7 given by

graphs of right quaternion multiplication so the map

.(S ) - constant can be a map from either S3 factor to the

other.

DEFINITION 5.17. A Hopf fibration of S x S3  is any great

3 3
3-sphere fibration of S x S which induces a strongly

injective embedding c S 3 -> S3 x such that

Im e - (S ,pt) or (pt,S 3 ).

THEOREM B. The space of all oriented great 3-sphere
.. fbraionsof ~x 3 _ 7

fibrations of S3 x S C S deformation retracts to the

*subspace of Hopf fibrations and hence has the homotopy

type of a disjoint union of four copies of p3 .

PROOF: Let WA(S n  be the space of distance decreasing

map of Sn  to itself. We give nAM(Sn) the compact open

0 n
or C topology. Two maps f and g from S to

itself are within a of each other provided f(x) andS~n

g(x) are within a of each other for all x E S For

f f ,,f(Sn), f distance decreasing implies -f(x) / Im f

for all x Sn  so f is not surjective. By the Borsuk-

Ulam Theorem, there are Au E S n with f(u) - f(-u) u,
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For all so f ditac

SErSmind(x;*u) u, sof distance

decreasing implies d(f(x} ,u"} < 2U hence Image f Qoe

hemisphere of Sn .

LEMMA 5.18. There is a continuous map c : lh(sn- Sn

such that for each f e &S(S n ) . the image f(S n ) lies in

the open hemisphere centered at c(f).

PROOF: Im f certainly vaires continuously with f by the

choice of topology on "Th(S . Let B(f) be the closed

ball of smallest radius which contains the closed set Im f

1) B(f) is uniquely determined by f

This follows from the fact that on the unit n-sphere the

intersection of two closed balls, each of radius < n/2

is contained in some closed ball of smaller radius.

Let c(f) denote the center of the ball B(f) and

r(f) its radius.

2) r(f) varies continuously with f

If f is perturbed by less than I to g then

r(g) < r(f) + 6 and by symmetry r(f) < r(g) + .

3) Let B be a ball of radius r < T on Sn with

center p then for any ball C of radius a , a > r-,

inside B with center q # d(pq) < •

This follows easily since if p 4q then the great

S- . V• . oo " o - ' . , " " - ' . 0o , . - , . " . . . .. . . .i
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circle segment from p to q

to bB ha length r. The c
* r

portion of the segment from q

to bB has length > a > r-O

so the portion from p to q

has length < 13

Now for W12 > 6 > 0 given, let Ui be the open ball

about f ,U h (g E "tn(Sn) distance from f to g is

less than 9/2). Let B be the ball of radius r(f)+ g/2

with center c(f), then Image g Q B for all g C Us

hence B(g) Q B for all g E U Now (2) implies

r(f) - e/2 < r(g) so (r(f)+ s/2) - g < r(g) and by (3)

we conclude d(c(f),c(g)) < a . Since we can find such a

u. for all > 0 this implies c is continuous.

QED LEMMA.

* 3
Now we set n - 3 . For any f E SA(S ), radial

contraction of Im(f) to c(f) homotopes f , through

distance decreasing maps to a constant map,

3 3
f 0 S3 -> c(f) .S . By LEMMA 5.18, c(f) depends

continuously on f so this process is a deformation

3 3
retraction hence SATU(S 3 ) has the homotopy type of S

,, -- ~~~~~~~~~.... .... '..-.:..... ..-. .... '... ... ............................•....•, . ,-...... ...-
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S ince S 3X S3 is the double cover of SO(4) the

great 3-sphere fibrations of S 3X S3 determined by the

two constant maps, f£1 S3 -> p and f2:$3 S-> -p both

from the first factor to the second or vice versa, are

identical. So the family of great 3-sphere fibrations of

3 3
S X S determined by strongly injective embeddings

3
S S -> SO(4) has the homotopy type of a disjoint

3
union of two copies of IRP We get two more copies of
3RP by considering strongly injective embeddings

: S3 -> 0(4)- SO(4). QED.

Except for the last paragraph and part (3) of the

LEJPOI the proof of THEOREM B is essentially identical to

([G-W], Theorem D).

With this theorem we have answered completely, for

3 3
great 3-sphere fibrations of SKx S the three questions

posed on page 1s

1) Are all such fibrations topologically equivalent?

Yes, they are all trivial.

2) Given two equivalent fibrations, is it possible

to deform one to the other, through the space of

great 3-sphere fibrations of S3X S3 ? Not

necessarily, there are four distinct deformation
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classes depending on whether the base space embeds

in SO(4) or 0(4) - So(4) and as the graph of

a distance decreasing map from the first factor

to the second or vice versa.

iPictorially we may display these four

deformation classes as follows:

IBase space embeds in SO(4),
lifts to S3x S3 as (l,S3)

.j 3

lifts to S x S as (.S

S

Base space embeds in SO(4),

lifts to S 3x S 3 as (lS3 )
S 3

s3% !S Base space embeds in 0 (41 -SO 141,

lifts to S3x S3 as (S3 l)

3

l s o . . . ...s (. .
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3) What is the homotopy type of the space of all

such fibrations? By THEOREM B, the homotopy type!3
is four copies of 3i'3 .

47
Given a great 3-sphere fibration of 87 ,

F S 3~ .> s7 -- > S that also fibres S3 x S3  we may

take for the classifying map of the bundle F 9 the map of

3 3the base space of the fibration restricted to S x S into

0(4). By THEOREM B, the homotopy type of such a strongly

injective embedding of S3  in S0(4) is (0,1) or (1,0)

hence ye conclude that all such fibrations P are

topologically equivalent to the Hopf fibration.

Now we pose the questions Can every great 3-sphere

fibration of S3K x3 appear as a portion of a great 3-

sphere fibration of S7 ?

We will see the answer is yes. Letyes
i P0 " sPanle1 1 e2,e 3,e 4 ) 3 8 ane, 6 e, 8

- = span~e %tand P - span(e e aea )

". 8 Our plan is to combine two relatively simple

.1I concepts using the deformation provided in THEOREM B.

1) Every great 3-sphere fibration of 8 x S3  can

be Ofattened upm. Suppose t a S3 -> S is a distance

33decreasing map giving a fibration of S3 x S * It is a

-4i4.%,..V1 % K"d ' ;-. ~ .V .** *- ~ ... ,% . .%%.. .. - -
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simple matter to check that the family of 4-planes

3
Sta s aES ,O<t<] where

P ta ((utaut/(a)): u E 3H

gives a fibration of S7 - (P0 U P).

Viewed from the perspective of strongly injective

embeddings, we have given a map l - S3 -> 0(4) Q GL(4,R)

U(O] Hom(3R 4 R 4) where ep is a strongly injective

embedding. Using the linear structure of om(3R 4, a 4)

we extend o to a map IF : 4-[0) -> GL( 4 ,3R) via

V p(c) One can readily confirm that e a

(smooth) strongly injective embedding implies '0 is a

(smooth) strongly injective embedding. Clearly the graphs

of the image of I$ are Just the family of 4-planes above.

This viewpoint also illustrates that if we include

the 4-plane PO (extend ( with p(O) - 0) then while

we have a topological fibration it is no longer necessarily

C Of course an analogous problem occurs at P.

2) If *ts 83 -> constant, c E S 3 , then we can

include PO and P and retain differentiability. If

c w 1 this is clear for then the fibration obtained by

i amu .- : ,o,...... ,, ,* * ... . . .. . . .
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:-1 "fattening up" as in (1) are just the regular Hopf fibrations

(graphs of left or right quaternion multiplication). But

in the discussion preceding definition 5.17 we see that

4' 3those fibrations determined by $ : S -> c are given
":." 8
by orthogonal transformation, A , applied to 3R that

3 3fixes S X S and consequently P and P . Its clear0

that the result of "fattening up" the fibration

SS -> c gives the same fibration of S7  as A

applied to the regular Hopf fibration.

TEEOREM C. Every (smooth) great 3-sphere fibration of

S 3x S3 can be extended to a (smooth) great 3-sphere

04$ 7fibration of S

PROC: Given a great 3-sphere fibration of S 3x S 3

83 S3
let * : S -> S 3 as usual, be the corresponding

distance decreasing map. Let ts: S -- > S3 a t E I,

be the homotopy of $ , through distance decreasing maps,

to a constant map provided by THEOREM B, with tl -

and tc(x} W c for all x E S 3 .

Let It: [0,s) -> [0,1] be a C"'-function such

that it(I) - 1 and support X r (1/2,2). We suppose

A B I x 38 and consider the family of 4-planes:

- .**~.**.*.*. * . .. , *'.* , ...
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(Po U(P U.tv o<t <.) where

Ptv M ( (u -,t vu t (t ) (v)) : u E 38.

Note that for t < 1/2 and t > 2 (t) is a

constant map so the fibration is smooth in a neighborhood

of P0  and P a (by (2) above). With this it is easy to

verify that the above family fibres S7 and the fibration

is smooth if the original fibration of S3 x S3  is

smooth. QED.

As a final application of THEOREM 5.13 we re-prove the

wll known fact that the Grassman manifold of oriented
2-pane t~ 4 2

2-planes in I 2 is homeomorphic to S2 x S

From this and some related facts it can be seen that

Theorems A-D of [G-W] are essentially corollaries of our

THEOREM 5-14, 15, 16 and THEOREM B.

Let 22 33 33

Let S xS S 3xS be the set (xy) E S 3  S3

with R x =re =0. Lt P- =(u,u): u EIR) r 8

P is a 4-plane and P is the graph of h(lal) - id

E SO(4) as a map from P0 to Pe . In general we write

P(xV¥) for the 4-plane given by the graph of h(xy), so

P p(101) "

. . ... ..-. ,-
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ZMDA 5.18. R (x*y)" P n P (x,y) is a 2-plane in P for all

2 2
(x"y) E S x hoe

PROOF: (xy) f S2 x S2 implies d(x,1) = d(y.1) so by

3
Theorem 5.13, h(x,y) has a fixed point w E S But the

fixed point set of an element of SO(4) that is not the id-

entity is either 0 or 2 dimensional, hence h(xy) has a 2-

dimensional fixed point set. Since P n P(x,y) is the fixed

point set of h(xy) we conclude R(Xy ) is a 2-plane. QED

So if we identify P with 3R we see that

(x.y) E S2 x S2 corresponds to a 2-plane R(xy ) in P.

Now we'd like to show that every 2-plane in P arises in

such a manner. This will follow from

LEMMA 5.19. For any x,y E S3, Y E x', the system of

equations uxv - x and uyv - y has a solution (u,v) E

S2 x S2 and the solution is unique up to sign.

PROF: y f x implies y 9 Ix so yx "1 f ±1. So there

is a unique great circle through 1 and yx-1 intersecting

the purely imaginary 2-sphere in antipodal points ±u.

This great circle contains all elements of S3 that commute

with yx -1 so uyx-Lu - yx- 1 . consequently,

uy(xl u 'x) - y N low conjugation fixes the purely

-' , ' ',- ,'',c ",'.,' -,,..-.,',:, ,.,-, ....-..-.- .., • -.- ,..-.,. .-...... ........ '........ .... . . ..



imaginary 2-sphere so u E 52 implies u -u f

-1-1 2
and hence x u x v E S Therefore uyv y and

UXV X 2

Now *u are the only points of S that commute

with yx - * If u'xv' - x and u'yv' - y then y'yx u'
-l -l

- yx so u' coumutes with yx hence u' - *u

Therefore our solution is unique up to sign. QED.

SLEA 5.19 tells us that for any pair of orthogonal

vectors in S3 , there exists (x,y) E S2 X S2 such that

the 2-plane spanned by the orthogonal pair is precisely

the fixed point set of the orthogonal transformation

h(xy). Consequently every 2-plane in P arises as

P n R(xy) for some (x,y) E S2X 52 . Because of the

uniqueness statement in the LEQI we get a bijective

correspondence between 2-planes in P and points of

S2 X2 /(x,-y) (-x,-y). If we choose an orientation in

the 2-plane R say, and extend continuously, we get

a bijective correspondence between oriented 2-planes in

P and points in S2X S2

Finally, we'd like to show how the base space of a

great circle fibration of S3 % P appears in 2 X S2

From THEOREM 5.13, if R(xVy } intersects R(uv ) in more
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than the origin then we know d(x, u) d(y.v). A priori,

however, if d(xu) - d(yv),q then while we know P x.y)

intersects P(uqv) in more than the origin, its not clear

that this intersection need appear inside P . The next

lema says that this does happen.

LENIA 5.20. R intersects R in more than the(xi,y) (u..V)
origin, if and only if d(x,u) - d(y,v) in S2 X S

PRoOP: (.) THEOREM 5.13.

(a) Let S - [w .S 3 h(xy)(w) = xwy m w]. From

LEJMA 5.18 we conclude S is a great circle since S is

the fixed point set in S3 of h(xy) F SO(4). For

u C S2 , u . *x (where the result is clear), let

S(u) - (z C S2- d(xu) -d(y,z))

x

u . S (u)

2 
S2

S(U) is homeomorphic to 8 if
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2F(u) -z E S: h(u,z)(w) -w for some w E S]

then by THEOREM 5.13 we conclude F(u) Q S(u).

But h(uZ) (w) - w 0 uwz w a - w-lu-1 w so we have

a map M SF> F(u),u w(w-wu-w. If we factor '

through 3P1 - ([w]: [w] - *W for w E S] then we get a

map T : Rpl .> F(u). j must be injective since if

w-lu"1 -w 2 - 1u w2 - z' for wI ) 1 # 2  then wI  and w2

span S and uwz' - w for all w E S . This implies

R(x,y) - ((SS)] - R (u"z, so by the uniqueness part of

LhiSI 5.19, (u,z') - *(xy) and u = *x , a contradiction.

Therefore r is a continuous injection and F(u) is
1oeoo hcto l 1S1

homeomorphic to RP , contained in S(u) - . This

can happen only if F(u) - S(u). Since v E S(u), we

conclude v f F(u) and there is a w E S with

h(u,v) (w) = uwv = w - xwy - h(x,y)(w) so

(ww) E R(xvy} R(UV )  QED.

Thus we have established the connection between great

circle fibrations of S3 and distance decreasing maps

t s 2 > 2
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